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Abstract
The KASSIOPEIAparticle tracking framework is an object-oriented software package usingmodernC+
+ techniques, written originally tomeet the needs of the KATRINcollaboration. KASSIOPEIA features
a new algorithmic paradigm for particle tracking simulations which targets experiments containing
complex geometries and electromagnetic fields, with high priority put on calculation efficiency,
customizability, extensibility, and ease-of-use for novice programmers. To solve KASSIOPEIAʼs target
physics problem the software is capable of simulating particle trajectories governed by arbitrarily
complex differential equations ofmotion, continuous physics processes thatmay in part bemodeled
as terms perturbing that equation ofmotion, stochastic processes that occur in flight such as bulk
scattering anddecay, and stochastic surface processes occurring at interfaces, including transmission
and reflection effects. This entire set of computations takes place against the backdropof a rich
geometry packagewhich serves a variety of roles, including initialization of electromagnetic field
simulations and the support of state-dependent algorithm-swapping and behavioral changes as a
particle’s state evolves. Thanks to the very general approach taken byKASSIOPEIA it can be used by
other experiments facing similar challenges when calculating particle trajectories in electromagnetic
fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

1. Introduction

KASSIOPEIA is a software package for the purpose of tracking particles in complex geometries and
electromagnetic fields. It has been developed in order tomeet the simulation needs of the KATRIN
collaboration, which endeavors tomeasure the absolute neutrinomass scale through tritium β-decay. Strong

evidence for the existence of non-zero neutrinomass follows from the legion of experiments demonstrating
flavor oscillation phenomena [1–7]. The discovery of neutrino oscillations (hence, neutrinomass) is the first
demonstration of neutrino properties beyond the StandardModel prescription.However, oscillation
phenomena dependonly on the differences of the squares of neutrinomass eigenvalues m m m ;ij j i
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absolute neutrinomass scale does not enter into the description of oscillation phenomena. As such, the absolute
neutrinomass remains one of the foremost open questions in neutrino physics at the present time.

Themost sensitive direct searches for the electron neutrinomass to date are based on the investigation of the
electron spectrumof tritiumβ-decay. The electron energy spectrumof tritiumβ-decay for a neutrinowith
componentmassesm m, ,1 2 andm3 (withmixing amplitudesU U,e e1 2, andUe3, respectively) is given (with some
simplifications11) by
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whereE(p) denotes the electron’s kinetic energy (momentum),E0 corresponds to the total decay energy,
F Z E,( ) is the Fermi function, taking into account the Coulomb interaction of the outgoing electron in the final
state, and E E mi0Q - -( ) is the step function that ensures energy conservation. As both thematrix elements
and F Z E,( ) are independent ofmν, the dependence of the spectral shape onmν is given by the phase space
factor only. The bound on the neutrinomass from tritiumβ-decay is independent of whether the electron
neutrino is aMajorana or aDirac particle.

Although the history of beta spectroscopy spans a variety of different magnetic and electrostatic
spectrometers, the technique that has demonstrated the greatest sensitivity to neutrinomass has beenMAC-E-
Filters (Magnetic Adiabatic Collimationwith Electrostatic Filtering). This type of spectrometer, originally based
on thework byKruit [8]was later utilized by theMainz [9] andTroitsk [10] experiments to set a limit on the
neutrinomass on the level of 2 eV. TheMAC-E filter technique demands a smoothly varyingmagneticfield and
has an energy resolution that is dictated by the ratio of theminimum tomaximummagnetic field strength. This
dictates that better energy resolution be accompanied by an increase in the physical size of the spectrometer. The
KATRIN experiment’smassive size and other design optimizations [11]will allow it to reach an energy
resolution of 0.93 eV, and should allow it to place a limit on the neutrinomass approximately an order of
magnitude better than the current state of the art [9, 10].

Figure 1 illustrates the overall components of the experiment, which include: (a) a rear section, used for
calibrating the response of the detector andmonitoring the source strength, (b) awindowless gaseous tritium
source (WGTS), where 1011 electrons are produced per secondby the decay ofmolecular tritiumgas at a
temperature of 30K, (c) an electron transport and tritium elimination section, comprising (c) an active
differential pumping (DPS) followed by (d) a passive cryo-pumping section (CPS), where the tritiumflow is
reduced bymore than 14 orders ofmagnitude, (e) the electrostatic pre-spectrometer that offers the option to
pre-filter the low-energy part of the tritiumdecay spectrum, (f) the large electrostaticmain spectrometer of
MAC-E-filter type that represents the precision energyfilter for electrons, and (g) a segmented Si-PINdiode
array to count the transmitted electrons. Further details on the experiment’s design andperformance
parameters can be found elsewhere [11].

A suitable computationalmodel of such a complex experiment is indeed necessary if one is to properly assess
the results obtained by the experiment. Such a tool is essential formany tasks, from the estimation of
background rates and systematic effects tomodeling signal electron energy loss and backscattering at the silicon
detector. Ultimately, detailed simulations based onmeasurements performed during installation are themost
accurate tool for evaluating the sensitivity of the entire experiment, giving thema position of central importance.
However, such performance goals often impose strict (and often contradictory) conditions on the simulation
software. For one, the software needs to be able to accurately propagate electrons through the complexfields and
geometries found in the experiment, while at the same time retain high efficiency and flexibility for such
propagation. In addition, KATRINneeds to be able not only to calculate such trajectories, but also compute the

Figure 1. Schematic overviewof the 70mKATRIN experimental beam-line: (a) the rear section, (b) the tritium source, (c) theDPS, (d)
the CPS, (e) the pre-spectrometer, (f) themain spectrometer and air-coil framework, and (g) the focal-plane detector system.

11
Note that we have neglectedmodifications of the energy spectrumdue to the nuclearmatrix element and themolecular final state

distribution.
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electromagnetic fields in situ. Though tools exist for each task separately (e.g. GEANT4 [12] for particle tracking,
COMSOL [13] for electromagnetic field calculations), none provide a unified treatment of fields and particle
tracking that is adequate for the specific needs ofKATRIN.COMSOL is a proprietary, closed source software
package, and thus cannot be extended or adapted by the end-user. GEANT4does provide an extensive list of
particle interactions andmaterial properties, and is unrivaled in its treatment of high energy physics, but
KATRIN does not benefit from these features as it ismainly concernedwith the navigation of low-energy
particles traversing complex fields in a low to ultra-high vacuum. Furthermore, the tracking algorithms of
GEANT4were not designedwith the expectation of needing to trackmany low-energy particles in the adiabatic
limit, as this is not a common situation in high energy physics. Such particles undergomany cyclotron orbits and
require excessively short step sizes to solve the equations ofmotion, unless they are treated appropriately (i.e. by
way of the guiding center limit [14]). Tracking and navigation algorithms designedwithout this situation in
mind often suffer from unacceptably long computation times, and this difficultly is typically compounded
further in navigationally complex situations (such as inKATRIN’s wire arraymodules)where the particle’s
positionmust be knownwithfine precision on the order of the smallest feature of nearby geometric
components.

However, in direct comparison with long-established packages such asGEANT4 orCOMSOL, it is only fair
tomention that KASSIOPEIA, at themoment, contains only a limited number of interactionmodels which are in
the focus of theKATRIN experiment: electron interactions from the kilo-electronvolt range down to the
electronvolt regime in hydrogen, residual gases and silicon, allmodeled in great detail, including notmerely
ionization but also elastic and excitation contributions. The need for these detailedmodels presented another
argument to build a new package, as existing ones again could not be used. Tobroaden the scope of KASSIOPEIA,
ion interactions are under development at present and in the future the additional usage of existing third party
interactionmodules is planned. Along the same lines, the interoperability with common formats for data output
and simulation input (geometry formats,field representations)will be improved. At present geometries need to
be described inKASSIOPEIA’SExtensibleMarkup Language (XML) format and (non-constant)fields should stem
either from electrodes and coils implemented this way, or a (plain-text)fieldmap.Generally it can be said that
the overhead for introducing a newmodule such, as a reader for special expansions of—potentially even time-
dependent—electric ormagnetic fields (when the option to use afieldmap and interpolation does not suffice) or
a new interaction, is fairly limited and can be done without full knowledge of all the internal workings of
KASSIOPEIA—a developer guidewill follow soon. Proven use-cases include but are not limited to: electron
detection in silicon detectors, eigen-frequency calculation of static Penning traps, cooling ofmagnetically
trapped electrons in residual gas, and studies of transmission properties ofmagnetic spectrometers. Future
applications—given the integration of the appropriate interactionmodels—could also extend to germanium
detectors, liquid xenon/argon time projection chambers, or further.

Furthermore, existing software tools did not provide the requiredflexibility sought by theKATRIN
experiment. For instance, a researcher trying to design a new component of the spectrometer electrode system
needs quick feedback on its influence on thefields, and ultimately needs to understand the influence it has on the
dynamical properties of the spectrometer. Anothermight need to understand tritium ionpropagation and
scattering in the source of the experiment. Even twopeople working on the same topicmight be interested in
completely different aspects of the same physics, requiring different output from an otherwise identical
simulation. Such examples are inexhaustible, which indicates a need for a simulation package that is very
granular and allows for a large space of possiblemodule combinations and arrangements, in a user-configurable
way. The combined requirements ofmodularity, extensibility, and ease-of-use for novice programmers
unfortunately have ruled out themajority of existing candidates.

In light of these facts, development beganonKASSIOPEIA, a new general particle andfield simulation package
designed tomeet the diverse needs outlined above. Sincemodularity, encapsulation and speed are essential, the
development team decided to implement the simulation as an object-oriented designwritten in C++, with a
user-interface based primarily on configuration files written inXML.Webelieve that the current version of the
code, which is nowpublicly available, broadly satisfies the requirements set out above andwill present a valuable
and complementary approach to particle simulationpackages available to thewider physics community.

The organization of this paper is as follows. Section 2 details the underlying design of theKASSIOPEIA
software package and its configuration. Sections 3 and 4describe the geometrymodel and the electromagnetic
field calculations, respectively. Sections 5 through 8provide a description of the generation of particle states
(section 5), their propagation through simulation geometries by solving of their equations ofmotion (section 6),
the treatment of stochastic interactions (section 7), and termination (section 8). Of subsequent interest are
section 9, which outlines the various data output options, section 10, which describes the command structure
responsible formaintaining the simulation statemachine, and section 11, which demonstrates the visualization
capabilities of this software. Finally, we concludewith some example use-cases and validation in sections 12
and 13.
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2. General design

The goal of particle tracking software and therefore also of KASSIOPEIA is to simulate the evolution of the physical
state ofmultiple particles with very high precision and efficiency. The particle therefore represents a
fundamental object, whose properties are to bemodified by the algorithms of the simulation software. The
inherent properties of a particle, itsmassm and electric charge q, arefixed during initialization, while the
dynamic properties, such as its position x, andmomentum p, will evolve as the simulation progresses.

2.1. Organizational structure
KASSIOPEIAʼs data structure, which isfilled by output from the simulation, is organized into four intuitive levels
of detail: Step,Track, Event andRun.A schematic representation of this classification is visualized in figure 2.
The individual levels are detailed as shown infigure 2.

• Step:The lowest level of organization in the simulation is a step. It represents the evolution of a particle over a
small amount of time and space from an initial to a final state. The propagation of the particle is achieved by
solving the equations ofmotion and by considering a variety of interactionswith the surroundingmatter and
fields. Additionally, navigation within the defined geometry is performed to detect the crossing of surfaces or
space boundaries.

• Track:The complete evolution of a particle from its point of origin to its termination is called a track, which
can be seen as a sequential collection of steps. A particle and therefore a track, is typically createdwithin an
event generator or through an interaction like ionization. It can be terminated by a collection of terminators
depending on specific states of the simulation. Additionally, a particle can also be terminated and a new one
generated by the navigation when crossing a surface or changing a space, which thereby splits the track
into two.

• Event:The next level of organization is an event, which is a collection of causally related tracks. Each event
typically has one primary track corresponding to the primary particle created by a generator, and optionally
additional secondary tracks created by splitting of the primary track or by new particles being generated
during an interaction process. There are also specific generators which producemultiple causally related
primary particles, for example in a radioactive decay sequence.Within one event, the primary particles created
and all of their descendants are tracked step-by-step until they are terminated.

• Run:The highest level of organizationwithin KASSIOPEIA is the run, which is a collection of events, whose
number is pre-defined by the user in the configuration file. It represents one execution of the simulation for a
fixed experimental setup.Multiple runs can be realized by runningmultiple KASSIOPEIA instances and
merging the produced output files at the end.

Figure 2. Schematic representation of a runwith three events and a total of six tracks. Each track starts with an initial state (white) and
endswith afinal state (black). It consists ofmultiple steps—four formost of the given examples. Via interaction processes such as
ionizationwithin a track, a newparticle and therefore a new track can be generated (track 3). Thus an event can consist out of multiple
tracks, which is also the case for an event of a radioactive decay chain, for example, creatingmultiple initial particles and therefore
multiple tracks within one event (tracks 4 and 5). A track can be split if it crosses a surface or changes a geometrical space, thus ending
the old track and starting a newone (tracks 5 and 6). Figure from [15].

4

New J. Phys. 19 (2017) 053012 DFurse et al



2.2. Simulationwork-flow
The introduced data structures need to be populated by the simulation algorithm.A simplified and schematic
chart of the simulationwork-flow is visualized infigure 3.When the simulation is started, first theXML
configurationfile is parsed and the defined objects used in the simulationwill be built and initialized, as detailed
in section 2.4. Then the event loop is executed n times and in each loop a user-specified generatorwill produce
oneormultiple initial particles. For each of these particles a track is created and consecutive steps are performed
until the track is terminated. User-defined quantities of the track including the initial and final particle state can
then bewritten to disk before the next track is executed. If the tracking of all particles of the event is completed,
including secondary particles created within the tracks, the specific event being executed isfinished and the
corresponding event output is written. After all n events have been completed, the run output is written and the
simulation ends after the deinitialization of all created objects.

Themost important part during particle tracking is the step loop, which is typically repeated a large number
of times for each track. The schematic representation displayed infigure 3 corresponds to a simplification of a
more sophisticated algorithm. In each step the particle is propagated by integrating its equations ofmotion over
the user-defined step size. This is typically themost expensive part of the simulation as it involvesmany
calculations of complex electric andmagnetic fields, gradients and potentials. After the propagation stephas
been evaluated, the particle’smean free path length for each of the given interaction processes is calculated and
the length at which the processwill occur is determined probabilistically. If the randomly generated interaction
length is less than the length of particle step’s trajectory, then the terminal position of the particle is adjusted
accordingly and the interactionprocess is executed on themodifiedfinal state of the particle. Additionally, the
navigator checks if the particle has crossed any geometrical boundaries within the calculated trajectory. If this is
the case, the final state of the particle is adjusted to lie on the crossing position of its trajectorywith the given
geometrical boundary. Interactions or commands associatedwith the boundarymay thenmodify the particle
state or induce a change in the configuration of the simulation, aswill be detailed in the next section. After the
propagation, interaction and navigation of the step is done, and the particle has reached itsfinal state for that
step, the information about the step and its initial and final particle states can bewritten to the output.
Subsequently, the active terminators are called to check if the particle has reached a certain physical state where
the user has defined itmust stop. If this is the case, the track isfinished, if not, then the step loop is repeated.

2.3.Modularity
Themost powerful feature of KASSIOPEIA is its flexibility andmodularity. The user can not only define the type of
modules to be used in the simulation such as generators, field calculators, or interactions, but thewhole
composition of the simulation algorithmcanbe changed depending on the particle’s geometrical state. This is
achieved through the combination of the concept of a toolbox in conjunctionwith a collection of container
classes and a dynamic list of commands. The toolbox exists tomaintain all of objects that the usermight use

Figure 3. Simplified schematic representation of KASSIOPEIAʼs simulation algorithm, composed out of three loops over events, tracks
and steps. Figure reprinted with permission from [15].
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during the course of simulation. The container classes (called root classes in KASSIOPEIA), serve to localize
physics processes with similar attributes (discrete interactions, propagation,field calculation, etc) and execute
the activated processes during themain simulation loop. The command listmodifies the container classes and is
responsible for the addition, removal or replacement of activated parts of the simulation. It is updated in a
dynamic way depending on the current location of the particle. The details of these three aspects of the
simulation are as follows:

• Toolbox:All objects of the simulation specified by the user are instantiated and stored in a so-called toolbox
when theXML configurationfile is parsed (see next section 2.4). This is the case for physicsmodules such as
particle generators,field calculators or interaction processes, but also for completely different objects such as
output components (see section 9).

• Root classes:The simulation algorithmworkswith container classes for the different types of processes
displayed infigure 3. These container classeswithin KASSIOPEIA are called root classes. There are two different
types, divided bywhethermultiple objects of the samekind are allowed to be active at the same time. The root
terminator, for example, can contain a list ofmultiple terminator objects, sowhen being called by the
simulation algorithm, itwill call all its ‘child’ terminators. The root trajectory, however, being responsible for
the propagation of the particle, can contain only one representation of the equations ofmotion, although
these equations can be composed ofmultiple terms. The root classes are typicallyfilled with user-specified
default objects at the beginning of the simulation, but theymay also be left completely empty. Theywill then
be filled by the navigator depending on the geometrical state of the tracked particle.

• Commands:Themanner in which root classes arefilled by thenavigator is completely exposed to the user. In
the configurationfile, a single ormultiple nested navigation geometries can be defined. For geometric objects
(see section 3) a basic distinction ismade between a navigation space, a navigation side, (which is some subset
of the boundary of a space), and a navigation surface (which is a free surface, not associated with a space). For
each navigation geometry, a set of commands can be defined that are executedwhen the particle enters the
corresponding geometry and are reversed,when the particle leaves it. A prerequisite of this commandmethod
is that nested geometriesmust be completely containedwithin their parent space. This is because processes
which are associated with the parent space remain active inside the nested geometry, unless otherwise
specified. This helps to avoid unnecessary deactivation and reactivation of objects upon traversal of the
geometry. Commands are typically defined to add, remove or replace objects from the root classes. An
example of this being the addition of an interaction to the root interaction for a certain surface or the
replacement of the step size control algorithm for a certain trajectory representation.

All objects in the toolbox that are referred to in one of the given commands (and thereforemay be used at
some time during the simulation) are initialized at the beginning before the start of the simulation.When an
object is added to the simulation, it is activated and subsequently deactivated upon removal. At the beginning of
each track, the navigation is started and the simulation is put in a state which depends on the geometry and
position of the particle. At each step, the navigator checks if the geometrical state of the particle has changed, and
if so, will activate the corresponding navigation geometry and execute the associated commands. After each
track isfinished, the navigation is stopped and the state of the simulation is put back into the defaultmode.

With thisflexible command concept it is possible to track particles through a variety of different lengths or
physical processeswithKASSIOPEIA using a single configurationfile. A prime example is the entirety of the
KATRIN experiment where electrons are generated in a gaseous tritium source, and propagate through the
approximately 70 m long beam line untilfinally entering a silicon detector. In this case, the dominant physical
processes change over the course of a particle’s path through each separate region of the experiment. For
example, in the source it is important to consider scattering off tritiummolecules, whereas in the ultra-high
vacuumof themain spectrometer there is very little scattering, but precision integration of the equations of
motion in the complex electromagnetic fields becomes necessary. An evenmore drastic changemust be
executed upon entry of the siliconmaterial of the detector, since the solid-state physics dictating electron
interactions there proceed on a scale of mm . This whole journey of the particle can be described as a single track
inKASSIOPEIA, as the simulation algorithm is adapted according to the correct underlying physics of each region
of the experiment.

2.4. Initialization
A simulation runwithKASSIOPEIA is completely defined by a configurationfile. In this file all simulation input
data are defined and created. This includes the entire geometry of the experiment, all kinds of different physics
processes thatmay be executed in the simulation, as well as the level of detail in the output and recorded
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quantities. The geometry navigation commands and also basic properties of the simulation, such as the value of
the initial random seed and the number of generated events, are also defined in the configuration. The
configurationfiles for KASSIOPEIA are based onXMLas specified in [16], with some additional features and
extensions. TheXMLparser of KASSIOPEIA is composed of a chain ofmultiple XML processors and the parsing
of the information is performed sequentially in the so-called SAX style. First an XML tokenizer creates tokens
out of the data stream from thefile, which are then fed into the chain ofXMLprocessors. These processorsmay
modify the streamof tokens until the last processor in the chain finally creates the desired object. The
modifications of the streamby the individual processors allows one the ability to perform advanced operations
while the XMLfile is parsed, such as variable definitions, evaluation ofmathematical formulas, or even loops and
conditional statements. Furthermore, it is also possible to break the configuration into separatefiles through an
includemechanismorwrite down a serialized version of a given configuration file. A snippet of an example
configurationfile is shown infigure 4.

3. Geometry

The geometrymodule of KASSIOPEIA comprises geometrical classes for a large number of different shapes, linear
algebramethods, structures for the relation between geometrical elements, and an extension system to add
arbitrary properties to shapes.

3.1. Shapes
The available shapes are divided into different types of surfaces and spaces. Both can be constructed froman
XML configurationfile by defining the necessary attributes that are required for the specific geometrical
element. Each single shape is createdwith its own coordinate systemdepending on the attribute values chosen by
the user. In example shown infigure 5, a box space, a cylinder space and a disk surface are constructed. The
origin of the box is located in one of its corners, while the origin for the cylinder is in its center.

Aside from the above given examples of basic shapes, it is also possible to constructmore complex arbitrary
shapes, from a set of points connected either by lines or arcs. The resulting poly-line can be rotated or extruded
to create non-trivial surfaces or spaces. All the features of theXML system as described in section 2.4 can be used,
such as loops, variable definitions, andmathematical operations. This significantly reduces the amount of text
needed to describe a large number of similar geometrical objects. If the available general purpose shapes cannot
easily represent the full complexity of an experiment, special purpose spaces and surfaces can be incorporated by
a user following the inheritancemechanism of the geometry package. As an example of the capability and
flexibility of the geometry system,figure 6 shows a comparison between the geometrymodel and a
photograph of the KATRINmain spectrometer interior.

3.2. Structure
Surface and spaces have to be placed and related to each other to form a nested relationship. Spaces
automatically contain a set of boundary surfaces andmay also contain other spaces or surfaces. The policy of
KASSIOPEIAʼs geometrymodule is that child spaces or child surfaces need to be completely containedwithin
their nesting parent spacewith no protrusion allowed. The user is responsible for ensuring this condition is
satisfied since as of yet no automatic collision detection between geometry objects is performed.

Figure 4. Example of anXML configurationfile, showing the features of variables, includes, conditions, loops, and formula
evaluations.
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When a space or surface element is placed inside another space,multiple transformations can be applied to
rotate or displace the child spacewith respect to the coordinate systemof the parent space. In the XML example
infigure 5 the defined shapes are structured in a nested relationship and infigure 7 a visualization of this example
is drawn together with its corresponding geometry tree. The tree is used to store the geometry relation internally.
When referring to a specific space or surface (for example when adding an extension to it), its address in the tree
is required, this can be specified using anXPath-like syntax as shown in figure 5.

3.3. Extensions
The shapes and surfaces of the geometrymodule feature an extension systemwhich allows a user to append
arbitrary information to an object. These extensionsmay contain different types of data for surfaces and spaces.
This can be, for example, the color of a geometrical shape, to be used by a visualizationmodule, or an extension
with electromagnetic attributes such as the current in a space or the potential on a surface. The electromagnetic

Figure 5. In the geometry XMLfile,first the definitions of the involved shapes are given, which in this example includes a box, a
cylinder, and a disk surface. Then the relation between the shapes is structured.Here the cylinder and the disk are placed inside the
box, and are rotated anddisplaced in the process. Finally, additional information is added to the cylinder inside the box. In this case, it
ismade into an electromagnet by specifying some associated current.Units of length are inmeters, rotation angles are in degrees, and
current is given in amperes.

Figure 6.Aphotograph (left) and 3D electromagneticmodel (right) of KATRIN’smain spectrometer. Visible in both themodel and
the photograph are the pumping ports, thewire frames andmesh of the inner vessel.
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extensions are of prime importance for the field calculationmodule in order to compute electromagnetic fields
for the given geometry. In the XMLconfiguration offigure 5 an example of an electromagnet is given, where a
current of 50 A is added as an extension of a cylinder object in order to form a solenoid coil.

4. Electromagnetic field computations

4.1.Magnetic field
For themagnetic field calculation of axisymmetric coils we use the zonal harmonic expansionmethod [17, 18].
This is a special version of the spherical harmonicmethod, applied for axisymmetric systems. It can be 100–1000
times faster than themorewidely known elliptic integralmethod, and it ismore general than the similar, but
morewidely known, radial series expansion [19–21]. It has not only high speed but also high accuracy, which
makes themethodparticularly appropriate for trajectory calculations of charged particles. Due to these
properties, no interpolation is necessary when computing themagnetic field during particle tracking.

The zonal harmonic expansions are convergent atfield pointswithin the central and remote regions, which
have spherical boundaries. Their centers, (referred to as the source point), can be chosen arbitrarily along the
axis of symmetry. The rate of convergence of the field series depends on the distance between the field evaluation
point and the source point; the smaller distance for central field points, and conversely, the larger distance for
remote field points, produces a correspondingly higher rate of convergence. The slower calculation requiring
elliptic integrals can be avoided, unless the field point is very close or inside the coil windings. The zonal
harmonicmethod can also be applicable for general three-dimensional coil systems, as long as the current
distribution of each coil is axially symmetric within its own local coordinate system. See [17, 22] and [23] for
more details.

Thefield of non-axisymmetric coils (e.g. coils which produce transverse dipolefields, which are rectangular,
rather than solenoidal) are computed by directly integrating the Biot–Savart formula.

4.2. Electric field
InKEMField, the boundary elementmethod (BEM) is used for static electric field computations. In the case of
metal electrodes, the (known) boundary conditions given at an arbitrary point on the electrode surfacemay be
expressed by aCoulomb integral over the unknown charge density of thewhole surface of the electrode system.
Thus an integral equation is obtained for the charge density function. To handle this problemnumerically, the
surface of the electrodes is discretized intomany small boundary elements, and a systemof linear equations is
obtained, for which the charge densities of eachmesh element serve as the unknown vector. To solve this system
of equations, either a direct or an iterativemethod is used.Once the charge densities are known, the potential
and field at an arbitrary point can then be computed by summing the potential and field contributions over all
boundary elements. InKEMField, bothmetal surfaces (withDirichlet boundary conditions) and also dielectrics
(withNeumann boundary conditions) can be used for electric field computations [24].

TheBEMhas several advantages relative to thefinite differencemethod (FDM) and the finite element
method (FEM). First, there is noneed to discretize the whole three-dimensional volume, only the two-

Figure 7.A set of nested spaces and surfaces (a) and its representation as a tree structure (b). In this example circles represent spaces,
squares represent boundary surfaces, and triangles represent free surfaces. Figures from [15].
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dimensional surfaces, thus the number of degrees-of-freedom is usually smaller. Second, for a given
computation time, the BEMproducesmore accurate potential and field values than the FDMandFEM [25]. In
addition, with the BEM, the potential and field at arbitrary points can be computed directly from the charged
sources (rather than interpolated fromvalues known atfixed points), which leads to very high accuracy and
yields smoothfield solutions. TheBEM is also ideal for an electrode systemwith large differences in size scales
(e.g. very small electrodes in a large-volume vessel) and can easily handle open systems, in contrast to the FDM
and FEM.

In the special case of applying theBEM for axially symmetric electrodes, the potential-field contribution of a
boundary element is usually evaluated with the help of thefirst and second complete elliptic integrals; often, a
numerical integration of the elliptic integral formulasmay also be necessary. To compute the potential and field
of thewhole electrode system, these contributions have to be summed over all elements. This summation can be
rather time-consuming. Fortunately, it is possible to use the previouslymentioned zonal harmonic expansion
methodwithin a large region of space of an axisymmetric electrode system [26], and thismethod is 2–3 orders of
magnitude faster than the calculation using elliptic integrals.

In the case of axisymmetric electrode system, a fewhundred or few thousand elements are usually enough to
get an appropriate discretization. A directmethod, likeGauss–Jordan elimination or LU decomposition, can be
used in that case to compute the unknown charge densities of the elements. Directmethods can also beused for
the special case of a discrete rotationally symmetric electrode system,where the number of elements could be
high (e.g. fewmillions) but the number of different charge densities is still small (e.g. a few thousand).

In themore general case of a complicated three-dimensional electrode system, a fewhundred thousandor
fewmillion elementsmight be necessary for a good discretization of the original surfaces. Typically, a three-
dimensional electrode system is discretized by a combination of triangles, rectangles, or wire elements. These
basic geometric elements approximate the charge density on themodeled surface using a piecewise constant
function for the charge density.With large linear systems of this size,memory requirements render direct
methods inapplicable and iterativemethods become necessary. KEMField deals with large systems through the
use of either theRobinHoodmethod, orKrylov subspacemethods. TheRobinHoodmethod, which is a special
version of the Gauss–Seidel iteration, allows one to solve the linear systemwith amemory cost proportional to

N( ) and a computational cost which scales like N a( ) (with1 2a< < ) [27]. On the other hand, Krylov
subspacemethods such as GMRES [28], if usedwith straightforwardmatrix-vectormultiplication, would by
themselves generally be insufficient to efficiently solve problems of this size. However, when combinedwith fast
multipole techniques [29, 30] they are a powerful tool which can greatly reduce the time to solution and reduce
memory cost.While a full description of the specific algorithmused by theKEMField library is beyond the scope
of this paper, KEMField provides amodifiedmultipolemethodwhich is a hybrid of the traditional fast multipole
method (FMM) [31] and a Fourier transform based approach known as the fast Fourier transform onmultipoles
(FFTM) [32, 33], which is described in detail in [34]. Krylov subspacemethods benefit greatly from
preconditioning whendealing with the three-dimensional Laplace BEMandKEMField provides several simple
choices such as Jacobi andBlock–Jacobi, as well as an implicit preconditionerwhich acts by solving the same
problem at reduced accuracy at each iteration in order to very effectively reduce the number of full accuracy
iterations needed.

Once the charge densities are known, the potential andfield of an element can thenbe computed directly
though the use of either analytical or numerical integrations. Typically, analytical integration formulas are used
to dealwith the singular integrals when the evaluation point is close to the element, while Gaussian quadrature,
which exhibits greater numerical stability, is used forfield pointswhich are far from the element (relative to the
element size). Direct calculation of the potential andfield by summing over all elements during charged particle
tracking is very time-consuming. To reduce the computation time, onemethod that is provided is an
interpolating fieldmap grid. For afixed electrode configuration, the potential andfield values at themany grid
points have to be evaluated only once, and during charge particle tracking thefield calculation by interpolation is
much faster than by the direct summationmethod. In order to increase the accuracy and to reduce thememory
requirements, we use a cubicHermite interpolation procedure [23, 35, 36]. Thismethod is very effective when
particle tracking is performedwithin small volumeswhich are well removed fromboundaries, and fast and
accuratefield evaluation is needed. Anothermethodwhich can sometimes require greatermemory usage but
canmap thefield towithin a user-defined tolerance everywhere is provided by the FMM.This technique
constructs a large collection of sphericalmultipole expansions (of the boundary elements in the far-field)
covering the volume of interest, while near-field boundary elements have theirfield contributions evaluated
directly. Several parameters exposed by thismethod, such as the expansion degree and spatial resolution, allow
the user greatflexibility tofine-tune a compromise between the accuracy, memory usage, and the speed of field
evaluation at run time.

In order tomake full exploitation ofmodern computing resources, KEMField has been designed to take
advantage of parallelizationwhenever possible. In order to do this KEMField canmake use of graphics
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processing units (GPUs) usingOpenCL [37] to accelerate bothfield calculation as well as the solving of BEM
problems. Additionally, KEMField can be compiled withMPI [38], for use on distributed computing platforms
making use of eitherCPU orCPU+GPUarchitectures.

5. Generation of particles

At the beginning of each event a particle generator needs to produce the initial state for a set of particles. In
addition to the definition of a particle’s intrinsic nature via itsmass and charge, it needs to be fully characterized
by seven parameters: position (x y z, , ), momentum (p p p, ,x y z), and time (t).While the type of the particle and
therefore its inherited properties can easily be specified by an IDnumber, following the PDGparticle numbering
pattern [39], the generation of its dynamic properties is broken up into a independent substructure consisting of
four generators for the particle properties: time, position, energy, and direction. This choice of quantities was
motivated by the particular use-case of KATRIN,which needs to examine particlemotion in anMAC-E filter,
forwhich it is generally advantageous to initialize a particle state by setting its energy andmomentumdirection,
rather than setting themomentum vector directly.

For each of the four independent quantities (time, position, energy, anddirection) the generated values can
be set independently by specifying so-called value generators, which can drawn numbers froma user-specified
distribution. Any combination of these value generators can be used to initialize the four basic quantities,
leading to a large number of possibilities. A selection of value generators that are availablewithin KASSIOPEIA is
presented in table 1.

These value generators can be used separately or combined to form a composite generator for time, position,
energy, and direction. In addition, there exist some special generators, which do notmake use of the composite
valuemechanism. For example, these can be special position generatorswhich can create random initial
positions uniformly in a space or over a surface, or energy generators which reflect the radioactive decay
sequences of specific unstable isotopes of radon, krypton or lead.

6. Propagation of particles

The propagation of particles, ormore specifically the calculation of their corresponding trajectories, is one of the
most important parts of theKASSIOPEIA software. Thismodule is responsible for integrating the equations of
motionwhich are represented as first order ordinary differential equations.WithinKASSIOPEIA all continuous
physics processes are represented as terms in the overall equation ofmotion.This includes not only the
propagation of the particle in conservative forcefields, but also processes such as radiative synchrotron losses,
which can separately be included in the equation ofmotion. In this way,when numerically solving the particle
motion, all of the included terms can treated together on equal footing. Depending on the choice of variables
used for the full physical state of a particle, the terms present the equations ofmotion can adopt different
representations. These are referred to as ‘trajectories’ inKASSIOPEIA. Each of the available trajectory types will be
introduced in the following subsections, along with the specific differential equations for each physics process.
Wewill also outline the integrators used to solve the differential equations in conjunctionwith the step size
controls required tomitigate numerical error.

6.1. Exact trajectory
Whendealing with an exact trajectory, the physical state of the propagating particle is described by a pair of
variables which are implicitly a functionof the time coordinate t. These are the position vector, r, and the

Table 1. Selection of value generatorswith description.

Value generator Description

Fix A fixed value defined by the user.
Uniform The value is drawn froma uniform distribution between a definedminimumandmaximumvalue.
Gauss The value is drawn from aGaussian distributionwith ameanμ and standard deviationσ. Generated valuesmay option-

ally be limited between a definedminimumandmaximumvalue with the normalization adjusted accordingly.
Formula The value is drawn between aminimumandmaximumvalue according to a density distribution of a user-defined

formula.

Set A specific number of values is generated equally spaced between a start and an end value.
List A list of values is used where each value in the list can be specified by the user.
Cylindrical A position value is drawn uniformly froma cylindrical volume.

Spherical A position or direction value is drawn uniformly from the surface of a sphere.
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momentumvector, p. The representation of the propagation term in the equation ofmotions of a particle with
charge q in an electric andmagnetic field E and B is given by the Lorentz equation. The terms for the ordinary
differential equations for the variables of the exact representation are therefore:
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wherem is the restmass of the particle, and γ is the relativistic Lorentz factor.

6.2. Adiabatic trajectory
If themagnetic and electric fields are nearly constantwithin a cyclotron radius of the particle, the first adiabatic
invariant gm, withμ being themagneticmoment, remains conserved along the trajectory of the particle. Under
this approximation, the physical state of the particle can be represented by its time, t, the guiding center of the
motion, rc, the components of the particle’smomentumwhich are parallel and perpendicular to themagnetic
field pand p̂ , and the gyration phasef [14]. The advantage of using this adiabatic trajectory is themuch larger
step size that is possible compared to the case of calculating an exact trajectory, since the curvature in the path of
the guiding center position ismuch smaller than in the propagation of the real particle position. The exact
position of the particle can be reconstructed from the guiding center after the propagation step, as visualized in
figure 8.

In case of the adiabatic representation, the propagation terms in the ordinary differential equation assume
the following form:
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Two additional terms need to be added to these propagation terms to account for gyration and drift caused by
themagnetronmotion. The gyration term can be derived from the cyclotron frequency of the particle, and since
it completely decouples from the guiding centermotion is simply
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The terms accounting for the driftmotion aremore complicated as theymodify both guiding center position as
well as themomentum components, their contributions can bewritten as

Figure 8. Illustration of the step takenwhen computing the exact trajectory (a) and the adiabatic trajectory (b). In the adiabatic
trajectory calculation the guiding center position is propagated,which allows amuch larger step size. The particle’s exact position can
be reconstructed afterwards if the gyration is included. Figures from [15].
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6.3.Magnetic trajectory
Anadditional trajectory typewithinKASSIOPEIA is the ‘magnetic trajectory’which canbe used to visualize
magnetic field lines. This is achieved by creating a pseudo-particle which is represented only by its time t and
position r. Particle properties such as kinetic energy ormomentum areundefined. In this regard, it is interesting
to note that in the context of KATRIN, electronswith a kinetic energy in the kilo-electronvolt regime posses
relatively small cyclotron radii. Therefore, on occasion, amagnetic trajectory can be a good approximation for
the path of such an electron. This simplification can be advantageous since amagnetic trajectory can be
calculated with considerably less computational effort than that which is required to track a charged particle,
either exactly or adiabatically. The ordinary differential equation in this case is simply

t B

r Bd

d
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6.4. Synchrotron losses
Besides the previouslymentioned terms for the propagation of the particle, other terms can be added aswell,
such as the synchrotron term,which handles free-space radiative losses by accelerated particles. This radiated
powerneeds to be expressed as a force term for use in trajectory calculations. Thewell known expression for this
is the Abraham–Lorentz–Dirac radiation reaction force, which suffers from several pathologies such as violation
of energy conservation and causality, as pointed out byDirac [40].WithinKASSIOPEIA a comparatively new
approach is implemented that avoids these problems and follows the equation ofmotion proposed by Ford and
O’Connell [41], which reads as
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while the second term is the radiation reaction force. This is the force term that is used in KASSIOPEIA for the
exact trajectory. Notice that the total time derivative of the fields requires us to calculate the field gradient and
these are in general very costly to evaluate. However, the term accounting for radiative losses in the adiabatic
representation is simpler and faster, and the full derivation can be found in [42]. The radiated power can be
described in terms of external forces acting on the particle as follows:
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where fP is the component of the force acting tangential to the particle’smotion and f⊥ acts normal to itsmotion.
Equation (14)needs to treated approximately bymaking the assumption that themotion of the gyration is
completely responsible for the radiation. This assumption is completely consistentwith the adiabatic
approximation, and yields the complete synchrotron term in this representation:
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This description is free offield gradients and as such can only be an approximation. However, the adiabatic
approximation to hold, the gradients need to be negligible anyway and therefore no new assumption is
made here.

6.5. Integrators
All of thementioned trajectories can bewritten as ordinary differential equations of the form y f x y,¢ = ( ).
These differential equations have to be integrated numerically. The numerical integration is carried out by
integrators of the Runge–Kutta type. KASSIOPEIA provides a variety of Runge–Kutta integratorswhichmay be
chosen by the user depending on their preference for accuracy or speed. Table 2 lists the available integrator
types and someof their properties. These integrators can be categorized by several properties. These are: the
order of truncation error on the solution as a function of the step size; the number of function evaluations
required to propagate the solution at each step; and the availability of a local error estimate. Since
straightforward Runge–Kutta routines typically do not provide information about the solution between steps,
some integrators have been equippedwith a continuous interpolant (dense output). All Runge–Kutta integrator
routines which do not provide an embedded dense output can optionally be equippedwith a first or third order
Hermite interpolant for dense output which requires no additional function evaluations. For problemswhere
extremely long tracking times or excellent energy conservation is required, a symplectic integrator is also
provided, as detailed in table 2. Since KASSIOPEIA is object-oriented and easily extensible, usersmay also chose to
add their own integrators using alternative Runge–Kutta, predictor–corrector, or symplectic algorithms. Any
additional integrators can be accommodated as long as they originate from from the KSMathIntegrator
interface.

6.6. Controls
The computation of a step is critical in terms of performance. Since it usually requires the calculation of the
electromagnetic field atmultiple positions, the number of calculated steps for each track should be limited as
muchas possible. Thismust be done carefully, as the accuracy in calculating the particle’smotionwill decrease
for larger step sizes, which can lead to a violation of energy conservation. The step size of the particle therefore
needs to be adjusted tomeet the specific requirements of the user. This customization is handled by step size
controls, which are part of the trackingmodule of KASSIOPEIA. A step size control suggests a specific step size
(with the dimension of time) to the integrator at the beginning of each step. After the step has been performed
the step size controlmay accept or reject the current step, and suggest a new step size. It is also possible to use
multiple step size controls simultaneously with the smallest suggestion being used. The simplest step size
controls withinKASSIOPEIA are user-defined constraints on amaximum time step or amaximum step length.
More advanced step size controls are also available. For regions where amagneticfield is present the step size can
be chosen based on afixed fraction of the current cyclotron period of the particle, this control results in small
steps in highmagneticfields and large steps in lowones. It also possible to adjust the step size dynamically to keep
the violation of conserved quantities, such as the total energy, within a user-defined range. Additionally,
dynamic step size adjustment is also available if a Runge–Kutta integrator with embedded error estimation is
used. In this case step size can be adjusted to keep the local error on the position and/ormomentum of the
particlewithin a range of user-defined absolute or relative tolerances.

Table 2. List of supplied Runge–Kutta integrators.

Name Solution order Function evaluations per step Embedded local error estimate Dense output order Reference

RKF54 5 6 Yes NA [43]
RKDP54 4 7 Yes 5 [44, 45]
RK65 6 8 Yes NA [46]
RK8 8 13 No NA [47]
RK86 8 12 Yes NA [48]
RK87 8 13 Yes NA [46]
RKDP853 8 16 Yes 7 [45]
SYM4a 4 4 No NA [49]

a This integrator can only be usedwith the exact trajectory.
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7. Interaction of particles

The interaction processes withinKASSIOPEIA are grouped into space interactions and surface interactions. Space
interactions occur stochastically as a function of a given probability during particle propagationwithin a dense
medium, while surface interactions are triggered onlywhen the particle reaches a surface whichhas a specific
interaction attached to it.

7.1. Space interactions
For particlesmovingwith a velocity v throughamediumwith a target number density ofn, the probability for an
interactionwith cross section ofσ to occur after time t can be calculated according to:
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InKASSIOPEIA the parametersn, v, andσ are calculated asmean values for the initial andfinal position of the
particle on the step. The density of themedium is calculated by a separate densitymodule. The simplest example
being defined by a constant density, whichmay be related to properties specified by user such as partial gas
pressure and temperature. The cross sectionσ corresponds to the sumof all individual cross sections of
interaction processes for this scatteringmodule. The time for the next scattering to take place can be generated
stochastically according to:
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whereP is drawn from auniformdistribution between 0 and1. If this scattering time is larger than the time it
takes the particle to complete the current step, no scattering will take place. On the other hand, if t tscat step< , the
trajectory of the particle is recalculated with a step size identical to the scattering time so that the properties of the
particle are exactly computed at the time just before scattering takes place. After that, a decision on the specific
scattering process to be executed (typically elastic or inelastic scattering), ismade based on their individual cross
section contributions. Finally, the scattering process is executed, therebymodifying the properties of the particle
and optionally creating newparticles.

7.2. Scattering types
Scattering processes are treated by the simulation in amodular way so that each process can be handled
individually as a so-called scattering calculator. This unit is responsible for calculating the cross section as a
function of the particle’s state, as well as executing the interactionprocesswhichmodifies the particle.Multiple
calculatorswith the same species can then be grouped into a scatteringmodule.

The dominant gas species inKATRINʼsmain spectrometer ismolecular hydrogen, while in the source
region it ismolecular tritium, with the scattering properties of both isotopes being very similar. The
corresponding cross sections, energy losses and angular changes for elastic [50–52], excitation [53, 54], and
ionizationprocesses [55] are implementedwithin different scattering calculators, one for each process.

Additional scattering processes for different species can be implemented easily. For example, this can be
done by importing data from the LXcat database [56], which has already been accomplished for the process of
electron scattering off argon [57].

In addition, specific scattering calculators to describing electron interactions in silicon are available. These
were adapted from theKESS package [58] andnoware completely integrated into KASSIOPEIA.

7.3. Surface interactions
Surface interactions differ from space interactions as they are only enforcedwhen the particle crosses a specific
surface. The associated surface interaction has to decidewhether the particle is transmitted to the next space or
reflected back into the previously occupied space. Thiswillmodify the properties of the particle accordingly, and
can result in an angular or energy changewhen crossing the interface betweendifferentmaterials.Of particular
importance toKATRINare processes where particles enter from vacuum into a solid silicon detector.

8. Termination of particles

The trajectory of a particle has to be terminated once a specific condition from auser-defined set ismet. The
condition to terminate the propagation of the actual particle can be defined in a veryflexible way. For example,
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the termination condition can be determined to occur when theparticle hits a detector after having propagated
through an experiment, or itmay bemade by identifying a specific particle property thatmakes further tracking
meaningless, such aswhen a certainminimal kinetic energy is reached, or if an undesired propagation direction
of the particle manifests. A selection of terminators availablewithinKASSIOPEIA are presented in table 3.

As a terminatormodule is a small classwith a simple structure, additional terminators as required by the user
can easily be added. Like all othermodules, terminators can be attached to specific navigation spaces or surfaces
of the simulation andwill only be activated once the particle enters that specified geometry.

9.Output

The output thatwill bewritten to disk for a given simulationdepends on the users needs.A static output system
thatwrites downfixed particle properties after each track or even step is therefore not desirable. This becomes
evidentwhen runningMonte Carlo simulationswithmillions of tracks, each track containingmillions of steps,
as the disk space required to save the simulated information can easily reach problematic dimensions.

Therefore, the output system for the recent version ofKASSIOPEIAwas designed in a highlyflexibleway that
allows the user to define each individual output component in theXML configuration for the four levels of
detail: run, event, track, and step. Therefore, it is possible to store exactly the amount of information that is
required, and the output can bemade to include very specific informationwhich is desired from relevant objects
in the simulation.

9.1. Output components
A single output component can be configured through a chain-like systemwhich starts with an object that has
been put into the simulation toolbox. By calling a getter function of the simulation object and repeating the
procedure for the resulting object, a chain can be producedwith the desired output variable at the end. For
example, if a user wants to write down themagnitude of themagnetic field at the end of each step. This can be
done by retrieving the step object from the toolbox, getting the final particle object from the step, getting the
magnetic field vector from the particle, and finally, calculating themagnitude of themagnetic field vector.

Multiple output componentswith the desired information about the simulation need to be grouped together
before they can be added to the object writing the output. Each group corresponds to a tree in the ROOT [59] data
structure, which is written to disk en bloc.When adding an output group to thewriter object, the user can
choose the level at which this group should be written, i.e. each step, track, event, or run.Output groups at the
step level can be connected to the navigation geometry aswell as any other simulationmodule, andwill only be
turned-onwhen the particle is in an active region. A typical step output groupmight consist of time, position,
energy, and electromagnetic field values at each step, while a typical track output groupmay be composed of
initial and final positions, energies of tracks, and information about the generation or the termination process.

9.2. Analysis logic
In addition to the flexibility of the output system,where the user can define exactly which variable at which
interval or geometrical state should be recorded, it is also possible to apply a simple analysis logic to the output
stream.This is highly useful, if for example, a user is only interested in themaximal kinetic energy of each track,
but does not want to record the energy information for each step. The alternative of storing all this information
and performing the analysis after theMonte Carlo is finishedwould increase the required disk space
significantly.

Table 3. Selection of terminators with description.

Terminator name Description

min/max z upper/lower bound on z component of position

min/max r upper/lower bound on r component of position

min/max kinetic energy upper/lower bound on kinetic energy

max time upper bound on track time

max length upper bound on track length

max steps upper bound on track step count

death stops track if this terminator is active

secondaries stops track if particle is a secondary

mindistance lower bound on distance to specific space or surface
trapped upper bound on longitudinalmomentum sign change count

output allowed range for the value of a specific output variable
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The available analysis logic for output components withinKASSIOPEIA allows for the determination of a
minimal,maximal, or integral value. These output components can be used at any level, but the resulting output
should be collected at least one level higher than the component it depends. For example, themaximal value of a
variablewhich is updated at step level should only be recorded at the track level or higher. Additionally, there is a
math output component, which can combine arbitrary output components at the same levelwith a user-defined
function.

9.3.Writers and readers
Apart from a simple ASCIIwriter, themainwriter for KASSIOPEIA is based on the binary data format of a ROOT
[59]file with a tree structure. For each selected group of output components of the four organization levels of
run, event, track, and step, a tree is created with the data objects as branches. Additionalmeta-information is also
storedwhich permits the correct reconstruction of the data. For a simple analysis of the data, the files can be
viewed andplottedwith a few clicks using theROOTTBrowser. For amore advanced analysis, the user has the
possibility to write their own analysis tools by linking against theKASSIOPEIA package.With the provided reader
classes, saved data can be reconstructed automatically for user-friendly access. Additionally, geometry data and
simulation data such as steps and tracks can also bewritten using theVTK format [60], which enables the
creation of three-dimensional visualizations of geometries and tracks, as detailed in section 11.

10. Navigation

The task of the navigationmodule is tomake sure that the simulation algorithm always follows the state defined
by the current geometry object which houses the particle, as defined by the user in the configurationfile. At the
beginning of each track the navigator needs to check the location of the initial particle position and adjust the
simulation algorithm accordingly. After each step the navigator checks if the current spacewas exited, a child
space was entered, or a surface was crossed. This is done by calculating the distance to all relevant navigation
geometries. As a caching system is used, these distances are not computed at each step, but only if the length of
the particle’s trajectory exceeds the cached limit. If a crossing of any navigation boundary is detected, the
position of thefinal particle is adjusted to the exact geometrical position of the intersected surface.

If this surface is associated with a change of the simulation algorithm, the corresponding commands are
executed and the next step of the particle is a surface step,meaning nopropagation takes places andonly the
interaction associated with this surface is executed. Afterwards, the navigator checks if the particle has been
reflected or transmitted, depending on the result of the surface interaction. Subsequently, the appropriate
commands of the space associatedwith the particle’s next step are executed.

If the crossed surface is part of a space change, without (surface) commands attached to it, the navigator will
adjust the simulation algorithmaccording to the corresponding commands. If a spacewas exited, the inverse of
the commands attached to this space are executed, and if a new space is entered, the commands attached to this
navigation space are applied.When entering a nested space, the particle still remains inside the encompassing
outer space, therefore the inverse commands associatedwith an exit condition are not executed. This ability to
nest spaces requires that the user ensure the set of commands that are appliedwhen entering a space are defined
in awaywhich respects the spatial hierarchy (to avoid repetition or the removal of objects which are no longer
active).

The change of the simulation algorithm’s state is achieved by commands,which can be used tomodify the
root classes, as detailed in section 2. The definition of these commands in the XMLconfiguration file is shown in
the following example offigure 9, where a simulation is set up in aworld spacewith a cylindrical inner volume.
When the particle enters this inner volume, the propagation calculation should switch from the adiabatic to the
exact method, the step output should be activated, and the particle should be terminated if it reaches the bottom
surface.

The example shown consists of two navigation spaces and a navigation side. Themain navigation space is the
world space, which possesses an attached commandwhich activates the adiabatic trajectorywithin the root
trajectory object, and several more commands which add terminators to the root terminator. Theworld space
also contains an inner volumewhich is of special interest to the user in the given example. In this volume, the
trajectory is replaced byfirst defining commands for removing the old adiabatic trajectory and subsequently
adding the exact trajectory to the root trajectory object. An additional terminator is addedwithin this new space
and also the step output is activated by adding an output group to the rootwriter. The particle should be
terminatedwhen reaching the bottom surface of the inner volume. As this particular surface is part of a
navigation space it is referred to as navigation side, in this case a command is attached to it which adds a death
terminator, which kills the particle track.
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The available command pattern is not limited to themodification of the root classes only, but can be used to
modify any object registered in the toolbox. For example, changing the step size control of a trajectory object or
adding a scattering calculator to a scatteringmodule is easily accomplished in this paradigm.

11. Visualization

In order to aid the user in reducing and understanding theMonteCarlo data produced byKASSIOPEIA, two
visualization options are available for generating graphical output: the three-dimensional VTKvisualization [60]
and the two-dimensional ROOT [59] visualization. These twooptions each depend on their corresponding
external libraries. Both visualization options are completely configurable in the XMLconfiguration file, and
some options include the ability to color track or step elements by dynamic variables, change the viewing angle,
and select and plot geometric objects.

Thefirst depends on the use of the external libraryVTK [60]. As detailed in section 9 various data
components at track and step scope can be saved to aVTKpolydata file (.vtp). The usermay then process the
polydatafiles using the visualization tool of their choice. In addition, data concerning the geometry, such as the
size and aspect ratio of BEMmesh elements, can also be exported and visualized in this way. Figure 10
demonstrates some of the capabilities of the KASSIOPEIA package and the use of the VTKoutput format in
conjunctionwith the visualization software Paraview. In this example the electron tracks are colored according
to their kinetic energywhile the photomultiplier tube (PMT) surfaces (consisting of roughly 150K triangular
elements) are colored according to their electrostatic potential. The PMT simulation depicted in figure 10, has
been performedprimarily as a demonstration of the visualization,field solving, and particle navigation
capabilities of KASSIOPEIA, it thus uses a simple toymodel for the secondary electron production. This simplified
model draws the number of secondary electrons from aPoisson distribution, and after some fractional energy
loss, randomly partitions the primary particle’s energy among the secondaries and ejects them each at a
randomly chosen angle.While this particularmodel of the surface physicsmay not be an accurate
representation, even such simplemodels can sometimes provide useful information. In this case, to provide an
example to the reader, we speculate that the relative gain variation of a PMT according to the strength of some
straymagnetic field could perhaps bemodeled. It is important to note that, while the existing interactions
models inKASSIOPEIA cannot handle every possible end use, it is a fairly simplematter for the end-user with
knowledge (e.g. scattering cross sections) of the physical process that theywish tomodel to insert any discrete
surface or volume interaction into the KASSIOPEIA framework.

The second visualization option depends on the use of the external libraryROOT [59], which it uses for
rendering and display. This is typically used to produced a two-dimensional cross section of a selected geometry
where particle tracks can be plotted and colored according to theuser’s preferences. In the example offigure 11,
the particle tracks are colored according to the pitch angle of the electronwith respect to localmagnetic field.
While visually less impressive than the three-dimensional option afforded byVTK, this type of visualization can
be very useful for detailed geometric investigations and is simple to use.

Figure 9. Example for a navigation definition in anXMLfile. The shown example is explained in full detail in the text.
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12. Validation anduse

Two very important issues of any scientific software are generality and correctness. Therefore it is of great
importance to provide example use-cases and validate the results that KASSIOPEIA produces. One very basic
feature of the KASSIOPEIA development cycle is the existence of a set of unit and integration tests that check the
basic functionality of separate and combined parts of the software. This tool aids in the continual development
and simultaneous use of the software and is critical to keep the software inworking order.

To establish the utility of KASSIOPEIAweprovide a list of published real-world applications as follows:

• ‘Radon induced background processes in the KATRIN pre-spectrometer’ [62]: KASSIOPEIA tracking
simulations are used.

• ‘Background due to stored electrons following nuclear decays at theKATRINexperiment and its impact on
the neutrinomass sensitivity’ [63]: KASSIOPEIA is used for stored particle tracking with interactions.

Figure 10.A series of electron tracks generated from a single photo-electron event in a simplified PMTdemonstration. The outerwall
of the PMThas been removed for visualization purposes. Thefield calculation and tracking in this example are accurate, the
interactionmodel for the electron scattering is simplified. The imagewas rendered using Paraview [61].

Figure 11.Cross section of theKATRINDetector systemwith electrons simulated as entering from the left and terminating on the
detector at right. The superconducting coils are shown in green providing a guidingmagnetic field. The trumpet-shaped post
acceleration electrode sits immediately before the detector and is held on+10 kVpotential.
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• ‘Stochastic heating by ECR as a novelmeans of background reduction in the KATRIN spectrometers’ [64]:
KASSIOPEIA is used for stored particle trackingwith interactions.

• ‘TheKATRINpre-spectrometer at reducedfilter energy’ [65]: KASSIOPEIA is used for tracking simulations.

• ‘Electromagnetic design of the large-volume air-coil system of the KATRIN experiment’ [66]: KASSIOPEIA is
used formagneticfield calculation and field line tracking.

In addition to the aforementioned studies, there are also several examples that provide validation through a
direct comparison of the output of aKASSIOPEIA simulationwith actual experimental data. These include:

• ‘Validation of amodel for radon-induced background processes in electrostatic spectrometers’ [67]: Stored
particle trackingwith interactions.

• ‘Modeling of electron emission processes accompanying radon-α-decayswithin electrostatic spectrometers’
[68]: validation of a radon generator.

• ‘High voltagemonitoring with a solenoid retarding spectrometer of theKATRINexperiment’ [69]: magnetic
field calculation and field line tracking.

• ‘Investigation of the passage of electrons fromvacuum into the active volumeof a p–i–ndiode charged particle
detector’ [70]: electron tracking and diffusion in silicon.

• Project8, an experiment trying tomeasure the neutrinomass by taking tritium β spectra through detection of
cyclotron radiation, relies onKASSIOPEIA tomodel the radiative losses by electrons in amagnetic trap.

One particularly interesting comparison betweenKASSIOPEIA and experimental data is provided by the
Project8 experiment [71], the results ofwhich are shown infigure 12. In this example amagnetic field of
approximately 1.0 T ismodeled in KASSIOPEIA. A trapping region is implemented by distorting themainfield by
–40G in a parabolic shape that is similar to that used by the Project8 experiment. Electronswith pitch angles,f,
where 90 6f -  < ∣ ∣ , are trappedmagnetically for up to 1ms. Their tracks are calculated inKASSIOPEIA using
adiabatic trajectory integrated by an eighth order Runge–Kuttamethodwith a step size limited to 1.125
cyclotron periods. The electronsmove back and forth in the trap at a frequency near 100 MHzwhile circling the
field lines in cyclotronmotion, loosing energy due to cyclotron radiation. Further demonstrating the flexibility
of KASSIOPEIA and the ease bywhich itmay be extended, the simulated energy losses calculated byKASSIOPEIA
are sampled at 2 GHz and passed to an external software package called Locust that simulates the voltages
induced in an antenna and receiver.

Figure 12. Side by side comparison showing cyclotron radiation froma single electronmeasured in the Project8 experiment (left) and
that from a 30.23 keV electron simulated in KASSIOPEIA (right). The solid red lines denote the cyclotron frequency expected from
equation (22). Thedifference of eight orders ofmagnitude in the absolute power between the left and right panels derives from the
gain of the receiver, which is present in the experiment but is not necessary in the simulation. The power in the simulated noise
background is 10×10−22W/Hz. In the left panel the noise background at the input to the receiver is expected to be lower than the
above after replacing a terminationwith a reflecting short in the experiment, resulting in the higher signal to noise ratio in the left
panel. The plots demonstrate that the energy losses to cyclotron radiation calculated byKASSIOPEIA are consistentwith those observed
in an empiricalmeasurement.
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The right panel offigure 12 shows the power froma simulated 30.23 keV electron located at themagnetic
trapminimumwithpitch angle 90°. The slope of the track is in agreementwith the corresponding empirical
measurement from the Project8 experiment in the left panel to about 1%, confirming the calculations of energy
loss. The starting frequencies of the tracks agree to within 200 eV,which is consistentwith absolute uncertainty
on thefield at themagneticminimumof the trap. The difference inmagnetic fields is also responsible for the 1%
deviation of simulated andmeasured slope in the event. The solid red lines infigure 12 denote the cyclotron
frequency predicted from the ideal analytic expression

f
eB

m2
, 22

epg
=g ( )

where e andme are the charge andmass of the electron, γ corresponds initially to 30.23 keV, andB is 0.9583T
minus 39.97G (42.68G) in the left (right) panel. At t=1ms, the electron starts to lose energy to cyclotron
radiation with approximate power

Figure 13.The relative violation of energy conservation for an electron stored over 10 sm» . This corresponds to roughly 1.7million
cyclotron periods in a perfect static quadrupole trapwith amagnetic field of 1T and a voltage of 10V.This calculationwas performed
using the exact trackingmethodwith a step size limited to less than 10−11s. A full description is shippedwith KASSIOPEIA in the
corresponding configurationfileQuadrupoleTrapSimulation.xml, which enables any user to re-run this reference simulation.

Figure 14. From themotion of the electron in the trap the frequencies are derived by calculating themean time between two zero-
crossings. For themagnetronmotion y a tcosm m mw f= +· ( · )wasfitted to the data and afterwards subtracted to allow for proper
detection of zero-crossings for the cyclotronmotion. The top plot displays themotion in the z-direction, below that the cyclotron
motion in the y-component, and at the bottom themagnetronmotion is shown. The data are generated by the same
QuadrupoleTrapSimulation.xml as infigure 13.
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The rate of the energy loss determines the slope of the line and is in good agreement with both the simulation and
empirical data in 12.

Complementary to the comparison to real-world data, some simple physical test cases that have analytical
reference solutions have been incorporated into several stand-alone binaries. For example, charge density
calculations can be performed on several simple geometries such as a spherical or unit-cube capacitor, which
shown the field solvers are both accurate and scalable. For additional results discussing the validity and accuracy
of thefield computation the reader is referred to [24] and [34].

In addition, to test a complete case involving particle tracking, the simulation of a (static) quadrupole
Penning trap has been performed. This test case was chosen for several reasons. It exhibits long storage times of
charged particles, which is a prominent use-case forKASSIOPEIA and allows one to evaluate its performance in
this task. Itsfields and also the trajectories of stored particles arewell described analytically, whichmakes it
possible to evaluate tracking andfield computation independently against known solutions.On the other hand
this system is not trivial, in real-world applications it can be affected by electric andmagnetic field disturbances
thatmay be further explored in simulation. For this particular example, a plot showing the degree of energy
conservation violation is shown infigure 13.

Similar to the lawof energy conservation, another invariance theorem is very suitable to assess the numerical
errors in this particular system. TheBrown–Gabrielse theorem [72] states

. 24m z c c
2 2 2 2w w w w+ + =¢ ( )

It connects the frequencies observed in a quadrupole trap to the free cyclotron frequency Bc
e

me
w =

g
, where mw

is themagnetron frequency, zw is the axial frequency, and cw ¢ is the cyclotron frequency each as observed from
themotion of the particle in the trap. For the same simulation used infigure 13 a relative error of
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is observed.Here the frequencies were determined bymeasuring the length of half-periods for the y- and z-
components of the trajectory. Projections of the three oscillationmodes can be seen in figure 14. The gamma
factor entering the calculation of cw was derived from themean kinetic energy of the electronof about 0.8 eV,
whereas neglecting this leads to an error of 1.5 10 6-· . A commented Python notebook containing the analysis to
reproduce these results is shipped with KASSIOPEIA.

13. Conclusion

Wehave presented theKASSIOPEIA particle tracking framework developed within theKATRIN collaboration. It
was design to enable the fast and accurate computation of three-dimensional and axial-symmetric static
electromagnetic fields created by complex electrode andmagnet geometries, using KEMFIELDʼs fastmultipole
and zonal harmonicmethods, respectively. In thesefields particles can be tracked using various Runge–Kutta
integrators (available up to eighth order) over extended periods of time using either an adiabatic approximation
or by exactly solving the full Lorentz equation. The effects of synchrotron radiation can be taken into account in
both cases. Furthermore, interactionmodels for electrons scattering on gaseousmolecular hydrogen aswell as
helium, argon, and in silicondetectors are available. Amajor feature of the software is its flexibility, which stems
from theXML configuration language that is used to describe all aspects of a simulation. If the pre-existing
modules are sufficient for an end-user, noC++ code needs to bewritten and even novices can quickly devise
complex and interesting simulations. The incorporation of new effects andmodels does require C++
knowledge, but their inclusion ismade comparatively simple given themodular structure of the software. By
now it is heavily usedwithin theKATRIN collaboration to study all aspects of the corresponding experiment.
BeyondKATRIN it is used by the aSPECT [73] and Project8 [71] collaborations. Therefore, we believe that this
toolwill be useful to a wider scientific community and hope for newusers. The source code alongwith
instructions for installing dependencies, compilation, and the first steps of configuration is available for
download from: https://github.com/KATRIN-Experiment/Kassiopeia

The continued development of KASSIOPEIAwill be on-going and it is expected thatmany improvements and
additional features will be available in the future. Upcoming features will include the ability to track neutral
particles with spin, and particles which have an internal quantum state. Futhermore, thefield codewill
eventually incorporate additional integration techniques [74] to improve numerical stability andmaybe
extended to non-static problems using time or frequency domain BEM techniques.

22

New J. Phys. 19 (2017) 053012 DFurse et al



Acknowledgments

Thismaterial is based uponwork supported by theU.S. Department of Energy, Office of Science,Office of
Nuclear Physics under AwardNumbers FG02-97ER41041 andDE-FG02-06ER-41420. In addition, this work
was supported by theGermanBMBF (05A14VK2), HAP, KHYS, andKCETA.

References

[1] FukudaY et al (Super-Kamiokande Collaboration) 1998Phys. Rev. Lett. 81 1562–7
[2] AhmadQR et al (SNOCollaboration) 2001Phys. Rev. Lett. 87 071301
[3] AhmadQR et al (SNOCollaboration) 2002Phys. Rev. Lett. 89 011301
[4] AharmimB et al (SNOCollaboration) 2008 Phys. Rev. Lett. 101 111301
[5] Eguchi K et al (KamLANDCollaboration) 2003Phys. Rev. Lett. 90 021802
[6] An FP et al (Daya Bay Collaboration) 2012Phys. Rev. Lett. 108 171803
[7] AbeK et al (T2KCollaboration) 2011Phys. Rev. Lett.107 041801
[8] Kruit P andRead FH 1983 J. Phys. E: Sci. Instrum. 16 313
[9] Kraus C et al (MainzCollaboration) 2005Eur. Phys. J.C40 447–68

[10] Aseev VN et al (TroitskCollaboration) 2011Phys. Rev.D 84 112003
[11] The KATRINCollaboration 2004KATRINDesignReport 2004 FZKA ScientificReports 7090 ForschungszentrumKarlsruhe http://

bibliothek.fzk.de/zb/berichte/FZKA7090.pdf
[12] Agostinelli S et al (GEANT4) 2003Nucl. Instrum.Meth.A 506 250–303
[13] COMSOLMultiphysics Package http://comsol.com accessed: 2016-05-30
[14] NorthropTG1961Ann. Phys., NY 15 79–101
[15] Groh S 2015Modeling of the response function andmeasurement of transmission properties of the KATRINexperiment PhDThesis

Karlsruhe Institute of Technology http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046546
[16] Bray T, Paoli J, Sperberg-McQueen CM,Maler E andYergeau F 2008 ExtensibleMarkup Language (xml) 1.0http://w3.org/TR/xml/
[17] Glück F 2011Progress In Electromagnetics ResearchB 32 351–88
[18] GarrettMW1951 J. Appl. Phys. 22 1091–107
[19] Paszkowski B 1968 ElectronOptics (London: Iliffe)
[20] SzilagyiM2012Electron and ionOptics (NewYork: Plenum)
[21] Hawkes PWandKasper E 1996 Principles of ElectronOptics vol 3 (London:Academic)
[22] Glück F 2012Axisymmetric Electric andMagnetic Field Calculationswith ZonalHarmonic Expansion PIER Proc.March1698–702

http://piers.org/piersproceedings/download.php?
file=cGllcnMyMDEyS3VhbGFMdW1wdXJ8NEE1XzE2OTgucGRmfDExMTAxOTExMTgxNw==

[23] CoronaT J 2009Tools for electromagnetic field simulation in theKATRINexperimentMaster’s ThesisMassachusetts Institute of
Technology

[24] CoronaT 2014Methodology and application of high performance electrostatic field simulation in the KATRIN experiment PhDThesis
University ofNorth Carolina at ChapelHill

[25] CubricD, LencovaB, Read F andZlamal J 1999Nucl. Instrum.Methods Phys. Res.A 427 357–62
[26] Glück F 2011Prog. Electromagn. Res.B 32 319–50
[27] Formaggio J et al 2012Prog. Electromagn. Res.B 39 1–37
[28] SaadY and SchultzMH1986 SIAM J. Sci. Stat. Comput. 7 856–69
[29] Grengard L andRokhlin V 1988TheRapidEvaluation of Potential Fields in Three Dimensions (Berlin: Springer)
[30] RokhlinV 1985 J. Comput. Phys. 60 187–207
[31] Greengard L andRokhlinV 1997ActaNumerica 6 229–69
[32] Ong E, LimK, LeeK and LeeH2003 J. Comput. Phys. 192 244–61
[33] LimKM,HeX and LimSP 2008Comput.Mech. 41 313–23
[34] Barrett J 2016A spatially resolved study of theKATRINmain spectrometer using a novel fastmultipolemethod PhDThesis

Massachusetts Institute of Technology
[35] EupperM1985 Eine verbesserte Integralgleichungsmethode zur numerischenLösung dreidimensionaler Dirichletprobleme und ihre

Anwendung in der ElektronenoptikPhDThesisUniversität Tübingen
[36] Leiber B 2014 Investigations of background due to secondary electron emission in theKATRIN-experiment PhDThesisKarlsruher

Institut für Technologie
[37] Stone J E, GoharaD and Shi G 2010Comput. Sci. Eng.12 66–73
[38] Gabriel E et al2004OpenMPI: goals, concept, and design of a next generationMPI implementationRecentAdvances in Parallel Virtual

Machine andMessage Passing Interface (Berlin: Springer) pp 97–104
[39] Olive KA et al 2014Chin. Phys.C38 9090001
[40] Dirac PAM1938 Proc. R. Soc. Lond.A 167 148–69
[41] FordGWandO’Connell R F 1993Phys. Lett.A 174 182–4
[42] FurseD 2015Techniques for direct neutrinomassmeasurement utilizing tritiumbeta-decay PhDThesisMassachusetts Institute of

Technology
[43] Fehlberg E1969 Loworder classical Runge–Kutta formulaswith stepwise controlTechnical report NASATRR-316 http://hdl.handle.

net/2060/19690021375
[44] Dormand JR and Prince P J 1980 J. Comput. Appl.Math. 6 19–26
[45] Hairer E,Nørsett S andWannerG 1993 SolvingOrdinaryDifferential Equations I.Nonstiff Problems 3rd edn (Berlin: Springer-Verlag) 8
[46] Prince P andDormand J 1981 J. Comput. Appl.Math. 7 67–75
[47] Verner JH1978 SIAM J.Numer. Anal. 15 772–90
[48] Tsitouras C and Papakostas S 1999 SIAM J. Sci. Comput. 20 2067–88
[49] Chin S A2008 Phys. Rev.E 77 066401
[50] NishimuraH,DanjoA and SugaharaH1985 J. Phys. Soc. Japan 54 1224–7
[51] Liu J andHagstromS 1994 Phys. Rev.A 50 3181–5

23

New J. Phys. 19 (2017) 053012 DFurse et al



[52] Trajmar S, Register DF andChutjianA 1983Phys. Rep 97 219–356
[53] Arrighini G, Biondi F andGuidottiC 1994Mol. Phys. 41 1501–14
[54] Chen ZandMsezane AZ 1995 Phys. Rev.A 51 3745–50
[55] RuddME1991Phys. Rev.A 44 1644–52
[56] Pitchford LC2013 J. Phys. D: Appl. Phys. 46 330301
[57] Pitchford LC et al 2013 J. Phys.D: Appl. Phys. 46 334001
[58] Renschler P 2011KESS—anewMonte Carlo simulation code for low-energy electron interactions in silicon detectors PhDThesisKIT

http://nbn-resolving.org/urn:nbn:de:swb:90-249597
[59] Antchva I et al 2009Comput. Phys. Commun. 180 2499–512
[60] SchroederW, LorensenB andMartin K2006TheVisualization Toolkit 4th edn (NewYork:Kitware)
[61] AyachitU 2015The ParaViewGuide: A Parallel VisualizationApplication (NewYork: Kitware)
[62] Fraenkle F, Bornschein L,DrexlinG,Glueck F,Goerhardt S, KaeferW,Mertens S,WandkowskyNandWolf J 2011Astropart. Phys. 35

128–34
[63] Mertens S et al 2013Astropart. Phys. 41 52–62
[64] Mertens S et al 2012 J. Instrum. 7 P08025
[65] PrallM et al 2012New J. Phys. 14 073054
[66] Glueck F et al 2013New J. Phys. 15 083025
[67] WandkowskyN, Drexlin G, Fraenkle FM,Glueck F, Groh S andMertens S 2013 J. Phys. G:Nucl. Part. Phys. 40 085102
[68] WandkowskyN, Drexlin G, Fraenkle FM,Glueck F, Groh S andMertens S 2013New J. Phys. 15 083040
[69] ErhardM et al 2014 J. Instrum. 9P06022
[70] Wall B et al 2014Nucl. Instrum.Methods Phys. Res.A 744 73–9
[71] AsnerDM et al 2015Phys. Rev. Lett.114 162501
[72] Brown LS andGabrielse G 1982 Phys. Rev.A 25 2423–5
[73] SimsonM et al 2009Nucl. Instrum.Methods Phys. Res.A 611 203–6
[74] Glück F andHilkD 2016 arXiv:1606.03743

24

New J. Phys. 19 (2017) 053012 DFurse et al


