
KATRIN Scientific / Technical Report

January 18, 2013

KEMField - an electrostatic and magnetostatic field solving toolkit

A user’s guide for KATRIN members

Thomas Coronaa, Joseph Formaggiob, Ferenc Glückc,

a University of North Carolina at Chapel Hill, USA
b Massachusetts Institute of Technology, USA

c Karlsruhe Institute of Technology, Germany

Abstract

The electrostatic and magnetostatic field solving software KEMField, developed and main-
tained by the KATRIN simulation group, is introduced. The document provides a detailed
explanation of the installation and implementation of KEMField, as well as a general descrip-
tion of the structure of the underlying C++ code.

Contents

1 Introduction 2

1.1 Overview . 2
1.2 Building the KEMField libraries . 2
1.3 File structure . 2

1.3.1 Source files . 2
1.3.2 Saved files . 3
1.3.3 Other files . 3

2 Class KEMField: the user interface 3

2.1 Adding field solvers . 3
2.2 Initializing the geometry managers and field solvers 5
2.3 Accessing the electric and magnetic field and potential 5

3 Geometry primitives 5

3.1 Available primitives . 5
3.2 Adding primitives to the simulation . 6

3.2.1 Manually adding primitives . 6
3.2.2 Card readers . 7
3.2.3 KXML, other interfaces . 10

3.3 Managing geometry primitives . 10
3.3.1 Save and retrieval of geometry configurations 10
3.3.2 Electrode discretization . 11
3.3.3 Computation of electrode charge densities 11
3.3.4 Axially symmetric and asymmetric approximations 11

4 The Boundary Element Method 12

4.1 Overview . 12
4.2 Gaussian elimination and matrix inversion . 12
4.3 Gauss-Seidel method of successive displacement 12

5 Field Solvers 12

5.1 General Properties . 12
5.2 Direct calculation method . 13
5.3 Zonal harmonic expansion method . 13

5.3.1 Collections . 14
5.4 Interpolation from field maps . 14

5.4.1 Constructing field maps . 15
5.4.2 Implementing field maps for use in computation 16

1

1 Introduction

1.1 Overview

KEMField is a toolkit written in C++ for solving electrostatic and magnetostatic fields from
user-defined electrode and magnet configurations. The Boundary Element Method (BEM) is
used to compute discretized charge densities from continuous potential distributions along elec-
trodes [1],[2], and the field is computed using a combination of zonal harmonic expansions and
direct calculations from geometry primitives using the principle of superposition. In addition,
adaptive-refinement field maps can be generated for commonly accessed regions with compu-
tationally complex electric fields. The techniques employed are adapted from the routines of
Dr. Ferenc Glück [3],[4],[5],[1],[6],[7]. KEMField utilizes the GNU Scientific Library (GSL) [8]
and ROOT data analysis framework [9] for computation and save/retrieval algorithms, respec-
tively. KEMField employs both MPI [10] and OpenMP [11] for parallel field computation on a
computer grid.

1.2 Building the KEMField libraries

In order to build the KEMField libraries, the user must first add the main directory (KEMField/)
to the path environment variable, and the library directory (KEMField/lib) to the LD_LIBRARY_PATH
environment variable. This enables programs to link aginst the KEMField libraries by using
the KEMField-config command. The user must also have GSL (version 1.12 or newer) and
ROOT (version 2.24 or newer) installed, with the executables gsl_config and root_config

correctly identifying the respective library and include paths. To build the libraries and a suite
of test programs, the user need only execute the make command within the top directory1 2. The
included test programs are designed to demonstrate the functionality of different aspects of the
KEMField toolkit.

The libraries can be built to use MPI and OpenMP, if they are installed on the user’s oper-
ating system. To use MPI, the user must first set the environment variable USE_MPI, and then
recompile. Setting this flag causes Both MPI-enabled and MPI-disabled versions of the libraries
to be created (the MPI-enabled libraries and executables have the suffix _MPI in the root of the
name). To use OpenMP, the user must set the environment variable USE_OPENMP and recompile.

1.3 File structure

1.3.1 Source files

The source files for KEMField, located in KEMField/Source/, are divided into folders according
to the library to which they belong. They are:

• Geometry: classes defining the geometry primitives, primitive stores and geometry managers
(see Section 3),

• BEM: classes used in performing the matrix algebra associated with the Boundary Element
Method of solving for charge densities on electrode sub-elements (see Section 4),

• Direct: classes used to perform the direct field solving method (see subsection 5.2),

• ZHExpansion: classes used to perform the zonal harmonic expansion field solving method
(see subsection 5.3),

1
KEMField has been successfully tested on Mac OS X 10.4, 10.5 and 10.6, as well as several Linux flavors.

2Thanks to Daniel Furse for his complete revision of the Makefile, making the build process much more
dynamic.

2

• FieldMap: classes used to perform field map generation and field solving using field maps
(see subsection 5.4),

• IO: classes used to manage the input and output of files and messages for KEMField,

• Field: contains the base field solving class (see subsection 5.1), and the metaclass KEMField
(see Section 2), and

• Test3: main functions for test programs designed to demonstrate the utility of KEMField.

Within each folder for which there is an associated library, the source code is divided into header
files (include/), source files (src/), and files necessary to link against the ROOT libraries
(LinkDef/).

1.3.2 Saved files

Although the base folder for saved files may be changed by the user, the default configuration is for
saved files to be located within KEMField/field_data/saved_files/. Within this folder, ROOT
files unique to the electrode and magnet geometry are read and written, and the folder fieldmap/
contains data pertinent to a generated field map (if one exists). The folder field_data/ also
contains the folder images/ for storing test images generated by certain test programs, and
input_files/, where geometry cards are kept (see subsection 3.2.2).

1.3.3 Other files

In keeping with commonly accepted UNIX programming standards, generated executables de-
signed to test, validate and demonstrate the utility of KEMField are located in KEMField/bin/,
generated libraries are located in KEMField/lib/, temporary files are stored in KEMField/tmp/,
and scripts associated to KEMField (document generating scripts and submission scripts for
various grids) are kept in KEMField/scripts/. The documentation for KEMField (includ-
ing the document you are reading) is located in KEMField/doc/. Finally, the executable shell
script KEMField-config is designed for use by other programs to link against the libraries of
KEMField, in keeping with the standard *-config format.

2 Class KEMField: the user interface

In addition to being the name of the toolkit described by this document, KEMField is also
the name of the top-level class through which the user accesses the geometry and field solving
classes (to avoid ambiguity, KEMField, in this font, will hereafter always refer to the class, and
KEMField to the toolkit).

2.1 Adding field solvers

When an instance of KEMField is created, it has associated with it an electrode and magnet
manager (see subsection 3.3), but by default there are no field solving methods. The user must
choose which methods are appropriate to the simulation being performed, and in what order they
should be used. An example of adding field solvers to an instance of KEMField is demonstrated
below:
✞ ☎

. . .
// con s t ru c t an ins tance o f KEMField

3No library is associated with the Test folder.

3

KEMField∗ f i e l d = new KEMField () ;

// a genera l v e r b o s i t y s e t t i n g f o r managers and f i e l d s o l v e r s
Int_t verbose = 3 ;

// access the e l e c t r o d e and magnet managers
KElectrodeManager ∗ eManager = f i e l d −>GetElectrodeManager () ;
KMagnetManager∗ mManager = f i e l d −>GetMagnetManager () ;

// add a d i r e c t e l e c t r i c f i e l d s o l v e r to KEMField
f i e l d −>AddEFieldSolver (new KEDirectFie ldSolver (eManager)) ;

i f (eManager−>CheckForAxialSymmetry ())
{

// i f the s imu la t i on i s a x i a l l y symmetric , add a zona l harmonic e l e c t r i c
// f i e l d s o l v e r to KEMField
f i e l d −>AddEFieldSolver (new KEZHFieldSolver (eManager)) ;

// s e t the s o l v e r to the h i g h e s t p r i o r i t y (NB: the f i e l d s o l v e r can be
// accessed by name or by i t s index w i th in KEMField)
f i e l d −>SetPr i o r i t y ("KEZHFieldSolver " , 1) ;

// s e t the f i e l d s o l v e r ’ s v e r b o s i t y l e v e l
f i e l d −>SetVerbose ("KEZHFieldSolver " , verbose) ;

}

// s e t the d i r e c t f i e l d s o l v e r ’ s p r i o r i t y l e v e l to be lower than tha t o f
// the zona l harmonic e l e c t r i c f i e l d s o l v e r
f i e l d −>SetPr i o r i t y ("KEDirectFie ldSolver " , 3) ;

// s e t the f i e l d s o l v e r ’ s v e r b o s i t y l e v e l
f i e l d −>SetVerbose ("KEDirectFie ldSolver " , verbose) ;

// add a d i r e c t magnetic f i e l d s o l v e r to KEMField
f i e l d −>AddBFieldSolver (new KMDirectFieldSolver (mManager)) ;

// add a zona l harmonic magnetic f i e l d s o l v e r to KEMField
f i e l d −>AddBFieldSolver (new KMZHFieldSolver (mManager)) ;

// s e t the magnetic f i e l d s o l v e r ’ s p r i o r i t i e s
f i e l d −>SetPr i o r i t y ("KMZHFieldSolver" , 1) ;
f i e l d −>SetPr i o r i t y ("KMDirectFieldSolver " , 2) ;

// s e t the f i e l d s o l v e r s ’ v e r b o s i t y l e v e l s
f i e l d −>SetVerbose ("KMZHFieldSolver" , verbose) ;
f i e l d −>SetVerbose ("KMDirectFieldSolver " , verbose) ;

// s e t the e l e c t r o d e and magnet manager ’ s v e r b o s i t y l e v e l s
// (t h i s cou ld a l s o have been done by access ing the managers d i r e c t l y)
f i e l d −>SetVerbose ("KElectrodeManager " , verbose) ;
f i e l d −>SetVerbose ("KMagnetManager" , verbose) ;

. . .
✝ ✆

Once a field solver is added to an instance of KEMField, KEMField takes ownership of it. In
other words, when the user deletes the instance of KEMField that was created above, all of the
field solvers (and, naturally, the geometry managers) are deleted with it. While more than one
instance of KEMField can exist at once, the user must take care when sharing field solvers between
distinct instances of KEMField.

4

2.2 Initializing the geometry managers and field solvers

Since the geometry managers both share the same underlying structure, and the field solving
classes conform to a base model, it is possible to initialize the instance of KEMField for use in
field solving by merely executing the command
✞ ☎

. . .
f i e l d −>I n i t i a l i z e () ;
. . .

✝ ✆

The preparation of the geometry and field solvers is then taken care of by KEMField, and no
other user input is necessary. Once the geometry is loaded into the managers and the KEMField

instance is initialized, the user is ready to compute electric and magnetic fields and potentials.

2.3 Accessing the electric and magnetic field and potential

In order to get field and potential values from KEMField, the following functions are used:

• void CalculateBField(const Double_t P[3], Double_t field[6]) const: computes the
magnetic field at (P[0],P[1],P[2]). The first 3 components of field[6] correspond to the
x, y, and z-components of the magnetic field, and the last 3 the electric field (GEANT format).

• void CalculateEField(const Double_t P[3], Double_t field[6]) const: computes the
electric field at (P[0],P[1],P[2]).

• void CalculateField(const Double_t P[3], Double_t field[6]) const: computes both
the electric and magnetic fields at (P[0],P[1],P[2]).

• void CalculateBPotential(const Double_t P[3], Double_t field[6]) const: computes
the magnetic vector potential at (P[0],P[1],P[2]). The first component of phi[4] corre-
sponds to the electric potential, and the last 3 the magnetic vector potential ~A = (Ax, Ay, Az).

• void CalculateEPotential(const Double_t P[3], Double_t field[6]) const: computes
the electric potential at (P[0],P[1],P[2]).

• void CalculatePotential(const Double_t P[3], Double_t field[6]) const: computes
both the electric potential and the magnetic vector potential at (P[0],P[1],P[2]).

A complete demonstration of their use is given in the test program bin/TestEMField.

3 Geometry primitives

3.1 Available primitives

Electrodes can be arranged in a general 3-dimensional configuration using wires, rectangles and
triangles, but axially symmetric (or approximately axially symmetric) electrode configurations
consisting of conic sections and repeated wires, rectangles and triangles about the azimuthal
axis are preferable, as they facilitate the use of faster field computation algorithms. Currently
supported magnets include wire loops, solenoids and thick coils (electromagnets), each of which
can be defined according to its own symmetry axis. A graphical description of the available
electrode and magnet primitives can be seen in Table 1.

Depending on their symmetry properties, electrode primitives are either represented as sin-
gular instances or as collections of identical sub-elements repeated about the azimuthal axis.
For example, a KTConicSectElectrode describes a single conic section electrode with only one
placement in the system because it is naturally axially symmetric, whereas a KTWireElectrode

can describe a collection of multiply placed wire segments about the azimuthal axis. In addition,

5

Geometry Graphical Geometry Graphical
Primitive Description Primitive Description

d

�
x

1

2

x

r

z

KTWireElectrode KTConicSectElectrode

(collective) (singular)

b

aP�

n�

n� �

r

z

R

Z

I

z

r
KTTriangleElectrode KTRingMagnet

(collective) (singular)

r

zZ

R
�

r

z

K

R

r

Za Zb z

KTRingElectrode KTSolenoidMagnet

(singular) (singular)

b

aP�

n�

n�

�

r

zZa Zb

Ra

Rb

J

KTRectangleElectrode KTCoilMagnet

(collective) (singular)

Table 1: Available electrode and magnet geometry primitives. Collective primitives can be
represented as repeated instances about the azimuthal axis, demonstrating discrete rotational
symmetry. Singular primitives inherently have continuous rotational symmetry, and are therefore
represented as singular instances.

each electrode type can be placed into a KTElectrodeGroup, where the group of electrodes is
treated as a single independent electrode primitive during the implementation of the BEM.

Currently, only magnet primitives that have rotational symmetry about one of its axes are
represented in KEMField. There are therefore no collective magnet primitives, as all sup-
ported magnets are singular primitives. Since the computation of the magnetic field from a
magnet description is more straightforward than for its electric counterparts, and because mag-
net discretization and implementation of the BEM are unnecessary, there is no need to group
magnets for the simplification of a BEM calculation. Instead, magnets are grouped that share
a common axis of symmetry, allowing for multiple magnet groups that have different symmetry
axes. The grouping of coaxial magnets is done in much the same way that electrodes are grouped,
using instances of KTMagnetGroup. Examples of electrode and magnet groups can be seen in the
program bin/TestGeometry.

3.2 Adding primitives to the simulation

3.2.1 Manually adding primitives

An example of manually creating geometry primitives and adding them to the simulation is
displayed below:
✞ ☎

#include <cs td l i b >
#include <iostream>

#include "KElectrodeManager . hh"

#include "KTConicSectElectrode . hh"

6

#include "KTWireElectrode . hh"

int main (Int_t argc , char∗ argv [])
{

// Construct a s i n g l e conic s e c t i on e l e c t r o d e .
KTConicSectElectrode ∗ c = new KTConicSectElectrode (0 , // z_A (m)

. 5 , // r_A (m)
1 , // z_B (m)
. 5 , // r_B (m)
1 , // p o t e n t i a l (V)
5) ; // numDisc

// Construct f i f t y wires wi th d i s c r e t e r o t a t i o n a l symmetry about the
// azimutha l a x i s .
Double_t a [3] = {1 ,1 ,1} ; // x , y , z o f 1 s t endpoint o f 1 s t copy (m)
Double_t b [3] = {3 ,1 ,2} ; // x , y , z o f 2nd endpoint o f 1 s t copy (m)

KTWireElectrode∗ w = new KTWireElectrode (a ,
b ,
. 0 5 , // diameter o f the wire (m)
10 , // p o t e n t i a l o f the wire (V)
50 , // # of wires about the a z i . a x i s
10) ; // numDisc

// Construct a new e l e c t r o d e manager .
KElectrodeManager ∗ eManager = new KElectrodeManager () ;

// Add the conic s e c t i on e l e c t r o d e to the manager .
eManager−>Add(c) ;

// Add the wire e l e c t r o d e s to the manager .
eManager−>Add(w) ;

// When a pr im i t i v e i s added to the manager , a copy o f the p r im i t i v e i s
// cons t ruc ted as an o b j e c t w i th in the manager ’ s s t o ra g e c l a s s e s . The
// o r i g i n a l p r im i t i v e i s no l onger needed , and can be d e l e t e d by the user .
delete c ;
delete w;
. . .

✝ ✆

Note that, when an electrode is added to the simulation, a copy of its parameters is passed to the
appropriate storage classes. This means that the same electrode can be modified and added to
the simulation multiple times, reducing the number of times the user must call new and delete.

3.2.2 Card readers

Alternatively, geometry primitives can be loaded into a simulation via Elcd3_2, Elcd3_3, and
Magfield3-style cards. Card readers exist for conic section, rectangle, triangle and wire elec-
trodes, and for coil magnets. Cards that are read into the simulation can be commented by
using the escape character "#". Card readers can be used independently (see test program
bin/TestCardInput), or in conjunction with KEMField with the function
✞ ☎

void KEMField : : ReadGeometryFromCards (std : : s t r i n g ConicSectFileName ,
std : : s t r i n g CoilFileName ,
std : : s t r i n g RectangleFileName ,
std : : s t r i n g WireFile ,
s td : : s t r i n g TriangleFileName) ;

✝ ✆

7

Example Cards: The following are sample cards for conic sections, rectangles, wires and
magnets.
✞ ☎

i n p u t f u l l . dat

t o t a l number o f conic s e c t i o n s de s c r i b ed by the f i l e

2

the f o l l ow i n g 6 parameters are de s c r i b ed as f o l l ow s :
1: z−coord ina te o f the 1 s t endpoint o f the genera t ing l i n e (m)
2: r−coord ina te o f the 1 s t endpoint o f the genera t ing l i n e (m)
3: z−coord ina te o f the 2nd endpoint o f the genera t ing l i n e (m)
4: r−coord ina te o f the 2nd endpoint o f the genera t ing l i n e (m)
5: Po t en t i a l a t which the e l e c t r o d e i s he l d (V)
6: the number o f conic s e c t i o n s i n t o which the conic s e c t i on
w i l l be d i s c r e t i z e d (0 i f no d i s c r e t i z a t i o n)

1 .5 1 3 1 50 10

the next 6 parameters are i d e n t i c a l in meaning to the prev i ous l i ne ,
f o r the second conic s e c t i on

3 0 3 1 0 5
✝ ✆
✞ ☎

inpu t r e c t an g l e . dat

t o t a l number o f r e c t a n g l e s d e s c r i b ed by t h i s f i l e

2

the f o l l ow i n g 16 parameters are de s c r i b ed as f o l l ow s :
1: The index i s the number o f the r e c t ang l e in the f i l e . I t s t a r t s
at 1 f o r the f i r s t rec tang l e , and increments by one f o r each
subsequen t r e c t ang l e .
2: This parameter i n d i c a t e s to which KTElectrodeGroup the r e c t ang l e
be l ongs . Rec tang l e s t ha t are in the same group must be p l aced
toge t h e r in the f i l e , and the group parameter must s t a r t at one and
increment by only one (f o r r e c t a n g l e s w i th in the same group , i t does
not increment at a l l) . A l t e rna t i v e l y , the group parameter can be s e t
to −1 f o r a l l o f the r e c t ang l e s , i n d i c a t i n g t ha t the r e c t a n g l e s are
not grouped .
3: This parameter i s not used by the card reader .
4: For repea ted r e c t a n g l e s about the azimutha l axi s , t h i s parameter
s e t s the number o f repea ted i n s t ance s o f the r e c t ang l e the program
shou ld c r ea t e . The # of r e p l i c a s must be g r ea t e r than or equa l to
one ; i f a r e c t ang l e i s not repea ted about the azimutha l axi s , the
parameter shou l d be s e t to one .
5 ,6 , 7 : The x , y , and z−coord ina tes o f a corner o f the r e c t ang l e (m)
8 ,9 , 10 : the un i t v e c t o r po i n t i n g from P0 along the l onger s i d e o f
the r e c t ang l e (s i d e A)
11 ,12 ,13: the un i t v e c t o r po i n t i n g from P0 along the sho r t e r s i d e o f
the r e c t ang l e (s i d e B)
14: the magnitude o f the l onger s i d e (A) o f the r e c t ang l e (m)
15: the magnitude o f the sho r t e r s i d e (B) o f the r e c t ang l e (m)
16: the p o t e n t i a l o f the e l e c t r o d e (V)

1 1 0 10 0 10 . 0 1 0 0 0 1 0 .05 .05 10

8

the next 16 parameters are i d e n t i c a l in meaning to the prev ious
l ine , f o r the second re c t ang l e

2 2 0 1 0 0 1 1 0 0 0 1 0 1 1 1
✝ ✆
✞ ☎

inputw i re . dat

t o t a l number o f wires d e s c r i b ed by t h i s f i l e

1

the f o l l ow i n g 16 parameters are de s c r i b ed as f o l l ow s :
1: The index i s the number o f the wire in the f i l e . I t s t a r t s at 1
f o r the f i r s t wire , and increments by one f o r each subsequent
wire .
2: This parameter i n d i c a t e s to which KTElectrodeGroup the wire
be l ongs . Wires t ha t are in the same group must be p l aced to g e t h e r in
the f i l e , and the group parameter must s t a r t at one and increment by
only one (f o r wires w i th in the same group , i t does not increment at
a l l) . A l t e rna t i v e l y , the group parameter can be s e t to −1 f o r a l l o f
the wires , i n d i c a t i n g t ha t the wires are not grouped .
3: This parameter i s not used by the card reader .
4: For repea ted wires about the azimutha l axi s , t h i s parameter s e t s
the number o f repea ted i n s t ance s o f the wire the program shou l d
crea t e . The # of r e p l i c a s must be g r ea t e r than or equa l to one ; i f a
wire i s not repea ted about the azimutha l axi s , the parameter shou l d
be s e t to one .
5 ,6 , 7 : These three parameters d e s c r i b e the x , y , and z−coord ina tes
of one end o f the wire (m) .
8 ,9 , 10 : These three parameters d e s c r i b e the x , y , and z−coord ina tes o f
the o ther end o f the wire (m) .
11: Descr i bes the diameter o f the wire (m) .
12 ,13 ,14 ,15: These parameters are not used by the card reader .
16: Descr i bes the p o t e n t i a l o f the e l e c t r o d e (V) .

1 −1 0 10 . 5 . 5 −.15 . 5 . 5 .15 .05 0 0 0 0 100
✝ ✆
✞ ☎

inp u t c o i l . dat

t o t a l number o f magnets d e s c r i b ed by the f i l e

2

the f o l l ow i n g 13 parameters are de s c r i b ed as f o l l ow s :
1 ,2 , 3 : g l o b a l (x , y , z) o f l o c a l o r i g i n
4 ,5 , 6 : g l o b a l (x , y , z) o f l o c a l (1 , 0 , 0)
7 ,8 , 9 : g l o b a l (x , y , z) o f l o c a l (0 , 1 , 0)
10 ,11 ,12: g l o b a l (x , y , z) o f l o c a l (0 , 0 , 1)
13: number o f magnets de f i ned wi th in t h i s coor i dna te frame
#
numbers may be separa ted by ta b s or spaces (or both)

0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 2

the f o l l ow i n g 5 parameters are de s c r i b ed as f o l l ow s :
1: the z−coord ina te o f the middle o f the magnet (m)
2: the minimum r−coord ina te o f the magnet (m)
3: the t h i c kne s s o f the magnet in the r−d i r e c t i o n (m)

9

4: the l en g t h o f the magnet in the z−d i r e c t i o n (m)
5: the t o t a l curren t in the magnet (A)

−2.15 0.227 0.043 0.320 2120000.

the next 5 parameters are i d e n t i c a l in meaning to the prev i ous l i ne ,
f o r the second magnet de f i ned wi th in t h i s coord ina te frame

2 .15 0.227 0.043 0.320 2120000.
✝ ✆

3.2.3 KXML, other interfaces

Alternative methods for adding geometry primitives to KEMField, including KXML[12] and
direct inputs from the KATRIN database, are currently being developed.

3.3 Managing geometry primitives

The interfaces between electrode and magnet primitives created by the user and the field solving
routines employed in KEMField are KElectrodeManager and KMagnetManager, respectively.
By interacting with the electrode and magnet managers, the user is able to:

• Add and retrieve electrodes/magnets

• Set the reflectional symmetry of the simulation (electrodes only)

• Discretize electrodes (used for constant charge density approximation)

• Save and retrieve electrode/magnet geometries from file

The electrode and magnet managers contain methods that automate the preparation of a geom-
etry configuration for use in field computation. Once the geometry primitives have been loaded
into their respective managers, the user need only execute the commands
✞ ☎

. . .
eManager−>I n i t i a l i z e () ;
mManager−>I n i t i a l i z e () ;
. . .

✝ ✆

and the requisite steps are taken to enable field computation4. Feedback from the manager classes
can be printed to the screen by setting the verbosity of each class (e/mManager->SetVerbose(#))
from 0 (silent) to 5 (most verbose). The general steps of the initialization methods are outlined
below.

3.3.1 Save and retrieval of geometry configurations

When a geometry configuration is inputted into the simulation, a check is performed to determine
whether or not a similar configuration has been processed during a prior simulation. The default
locations and names for file saving/retrieving is KEMField/field_data/saved_files/electrodes.root
and KEMField/field_data/saved_files/magnets.root, but can be changed prior to initializa-
tion by executing the commands
✞ ☎

. . .
eManager−>SetSaveFileName(f i l ename) ;
eManager−>SetRetrieveFileName (f i l ename) ;

4When used within the context of the class KEMField, the managers are automatically initialized as part of
KEMField::Initialize().

10

mManager−>SetSaveFileName(f i l ename) ;
mManager−>SetRetrieveFileName (f i l ename) ;
. . .

✝ ✆

The manager classes determine if the loaded configuration is

• identical to a previous simulation,

• geometrically equivalent to a previous simulation, but with electrodes held at different po-
tential values,

• geometrically similar to a previous simulation, with identical potential values, or

• completely different from all previous simulations.

Each of these situations is handled differently during the computation of charge densities, which
is explained in Section 4. When a new file is to be created, its name is the chosen (or default)
save name root, appended with _#.root when a file with that name already exists. During the
comparsion against preexisting files, all files with the same name root are compared against the
current geometry.

3.3.2 Electrode discretization

One of the approximations of the BEM is the assumption of constant charge density across an
electrode. It is therefore necessary to discretize the electrode primitives added to the simulation
into smaller sub-elements, so the approximation can be held valid. Each electrode primitive in
KEMField has a method associated with it that automates this process, discretizing itself into
smaller electrodes according to an associated discretization parameter (passed to the electrode
in its constructor), as well as a static parameter associated with each primitive type. The
discretization of electrodes is performed once all of the electrodes are added into the simulation.

3.3.3 Computation of electrode charge densities

The computation of electrode charge densities is performed using the BEM. A more detailed
explanation of this procedure is given in Section 4.

3.3.4 Axially symmetric and asymmetric approximations

Once the electrodes are discretized and the charge densities for each electrode have been com-
puted, symmetry-related approximations can be made. For electrode configurations that are
nearly axially symmetric, primitives with discrete rotational symmetry can be approximated as
axially symmetric electrodes. The approximated electrode will be used in lieu of the original
electrode when the field point to be computed is sufficiently far from the electrode (scalable by
a user-defined parameter). Each collective electrode class contains a method for performing this
approximation.

Additionaly, electrode configurations that contain axially symmetric electrodes but in general
are not axially symmetric must be converted into a completely asymmetric configuration, in order
to allow for a varying charge density about the aximuthal axis. Each singular electrode class
contains a method for performing this approximation.

11

4 The Boundary Element Method

4.1 Overview

The theory behind the computation of the charge densities on electrode sub-elements via the
BEM is explained in [7], [13]. Procedurally, the task of the BEM classes is to solve the linear
algebraic equation

Ui = Wij · σj (1)

for σj, where Ui is the electric potential of electrode i, Wij is the geometric component of the
electric potential at a point centered on electrode i due to electrode j, and σj is the charge
density on electrode j. KEMField employs three methods for solving this equation:

• Gaussian elimination,

• inversion of the matrix Wij, and

• Gauss-Seidel method of successive displacement.

The BEM is employed automatically during the initialization method of the electrode manager.

4.2 Gaussian elimination and matrix inversion

For electrode configurations that are entirely dissimliar to those of previously computed simula-
tions, one of the first two methods (selected by a user-defined parameter) is employed to solve
for the components of the σj vector. While Gaussian elimination is faster than complete matrix
inversion, the latter method has the benefit of facilitating the speed of future computations,
where a geometry configuration differs from the current one only by differences in the potential
values on the electrodes. When it is used, the method of matrix inversion saves the computed
inverted matrix to file. Future simulations that vary in potential only can then be rapidly solved
by simply multiplying this matrix with the new potential values. Both methods are written for
serial computation and for MPI-enabled parallel computation using techniques from [14] for use
in distributed computing.

4.3 Gauss-Seidel method of successive displacement

The third method is used when a previously computed simulation differs geometrically only
slightly from the current configuration, and the initial approximate values for the charge densities
can be taken from the previous simulation. When the conditions for its use are appropriate, the
Gauss-Seidel method is the fastest method for solving the linear algebraic equation. However, the
method is not readily transferrable into parallel computation, and must be performed serially.

5 Field Solvers

5.1 General Properties

Once the geometry is prepared (electrodes and magnets inputted into their respective managers,
electrodes discretized and charge densities computed, symmetry approximations made, and files
saved), the user then selects the field solvers to be used in the simulation. All field solvers inherit
from the parent class KEMFieldSolver, and can perform the following basic tasks:

• std::string GetName(): returns the name of the field solver.

• void Initialize(): prepares the field solver for use in simulation.

12

• Bool_t FieldCanBeComputedAtPoint(const Double_t P[3]): returns true if the field solver
is valid at (P[0],P[1],P[2]), false if it is not.

• void CalculateField(const Double_t P[3], Double_t field[6]): computes the field at
(P[0],P[1],P[2]). The first 3 components of field[6] correspond to the x, y, and z-
components of the magnetic field, and the last 3 the electric field (GEANT format).

• void CalculatePotential(const Double_t P[3], Double_t phi[4]): computes the elec-
tric potential and magnetic vector potential at (P[0],P[1],P[2]). The first component of
phi[4] corresponds to the electric potential, and the last 3 the magnetic vector potential
~A = (Ax, Ay, Az).

• void SetVerbose(Int_t i): like the manager classes, sets the verbosity of the solver.

• void SetPriority(Int_t i): Sets the priority of the solver. This is explained in more detail
in Section 2.

5.2 Direct calculation method

✞ ☎

. . .
KEDirectFie ldSolver ∗ dESolver = new KEDirectFie ldSolver (eManager) ;
KMDirectFieldSolver ∗ dMSolver = new KMDirectFieldSolver (mManager) ;
. . .

✝ ✆

Direct field solvers (KEDirectFieldSolver, KMDirectFieldSolver) are so named because
they compute the electric potential, magnetic vector potential, and electric and magnetic fields
using techniques based on analytic forms specific to each geometry primitive. Derivations of the
formulae used to perform these calculations can be found in [1], [6], [7], [13].

When possible, analytic techniques for determining the electric field from a geometry prim-
itive are used. If an analytic form has not been derived, the electric field is computed using
numeric differentiation of the electric potential. Using the law of superposition, the field values
are computed as merely the sum of the contributions from each sub-element. If OpenMP is
enabled, these sums are performed in parallel.

5.3 Zonal harmonic expansion method

Geometry configurations that are axially symmetric (or approximately axially symmetric) can be
solved using the method of zonal harmonic expansion by envoking the classes KEZHFieldSolver
and KMZHFieldSolver. The method solves for the electric and magnetic field and potential by
computing series similar to the following forms:

Φcen(rcyl, zcyl) =

∞
∑

n=0

Φcen
n |z0

(

ρ

ρcen

)n

Pn(cos θ), (2)

Φrem(rcyl, zcyl) =

∞
∑

n=0

Φrem
n |z0

(

ρ

ρrem

)

−(n+1)

Pn(cos θ), (3)

for multiple z0 source points along the axis of rotational symmetry. This method is explained in
detail in [4], [5], [13].

Prior to initialization, parameters that characterize the zonal harmonic expansion technique
can be set as follows:

13

✞ ☎

. . .
KEZHFieldSolver ∗ zhEFie ldSolver = new KEZHFieldSolver (eManager) ;
zhEFie ldSolver−>SetZHParameters ((Double_t) prox_to_sp ,

(Double_t) convergenceParam ,
(Double_t) spSpacing ,
(Double_t) convergenceRatio ,
(Int_t) nCenCoeffs ,
(Int_t) nRemCoeffs ,
(Int_t) nB i fu r c a t i on s) ;

KMZHFieldSolver∗ zhMFieldSolver = new KMZHFieldSolver (eManager) ;
zhMFieldSolver−>SetZHParameters ((Double_t) prox_to_sp ,

(Double_t) convergenceParam ,
(Double_t) spSpacing ,
(Double_t) convergenceRatio ,
(Int_t) nCenCoeffs ,
(Int_t) nRemCoeffs ,
(Int_t) nB i fu r c a t i on s) ;

. . .
✝ ✆

where the paramaters are defined as:

• Double_t prox_to_sp: if the distance between a field point and a source point is less than
this tolerance, only the first terms of the series are used,

• Double_t convergenceParam: when the last term in the series is smaller than the former
term by this parameter, the summation ends,

• Double_t spSpacing: the distance along the z-axis between source points,

• Double_t convergenceRatio: when ρ
ρcen

or ρrem
ρ

is less than this ratio, the expansion method
is valid for use,

• Int_t nCenCoeffs: the maximum number of terms used in each central expansion,

• Int_t nRemCoeffs: the maximum number of terms used in each remote expansion, and

• Int_t nBifurcations: the maximum number of subdivided geometry collections. This is
explained in further detail in 5.3.1.

5.3.1 Collections

Both electric and magnetic geometry primitives are grouped into collections in order to extend
the utility of the method of zonal harmonic expansion. Geometry primtives are gouped according
to spacial proximity, allowing for a partial zonal harmonic calculation of fields even if the field
point is close to one of the collections of primitives. The grouping of electrodes is performed by
repeatedly bifurcating the electrode geometry along the z-axis (the number of bifurcations is set
by the user). For magnetic geometry primitives, collections are used to group magnets with a
common axis of symmetry, and these groups are subdivided [nBifurcations] times. If OpenMP
is enabled, the series expansions for different collections are performed in parallel.

5.4 Interpolation from field maps

For regions in which the computation of electric fields is computationally expensive, adaptive-
refinement field maps spanning the region can be constructed beforehand. Once the field maps
are generated, a fourth order reduced multivariate Hermite interpolator is used to compute the

14

electric potential and electric field to a user-defined tolerance. The technique is discussed in
more detail in [13].

5.4.1 Constructing field maps

Field maps may be constructed in serial for both axially symmetric and asymmetric electrode
configurations as follows:
✞ ☎

. . .
// con s t ru c t an ins tance o f KEMField
KEMField∗ f i e l d = new KEMField () ;

. . .
// add f i e l d s o l v e r s to the ins tance o f KEMField
. . .

// c r ea t e a po i n t e r to a genera l (2−dimensiona l or 3−dimensiona l) f i e l d map
KFieldMap_base∗ fm ;

Double_t t o l e r an c e = 1 . e−3; // to l e rance across the f i e l d map
Double_t maxCubeSize = 1 . ; // s i z e o f a s i d e o f the l a r g e s t cube (m)
Int_t nLevel = 3 ; // # of t imes the l a r g e s t cube can be subd i v i d ed

// . . . to make the t o l e r ance b e t t e r r e f l e c t the accuracy . . .
t o l e r an c e ∗=.1;

i f (eManager−>CheckForAxialSymmetry ())
{

// con s t ru c t a 2−dimensiona l f i e l d map f o r the a x i a l l y symmetric f i e l d
fm = new KFieldMap_2D (f i e l d , t o l e rance , maxCubeSize , nLevel) ;
// Set the (r_min , r_max , z_min , z_max) dimensions o f the map (in meters)
fm−>SetDimensions (0 , 3 , 1 . 5 , 5 . 5) ;

}
else

{
// con s t ru c t a 3−dimensiona l f i e l d map f o r the asymmetric f i e l d
fm = new KFieldMap_3D (f i e l d , t o l e rance , maxCubeSize , nLevel) ;
// s e t the (x_min , x_max , y_min , y_max, z_min , z_max) dimensions
// o f the map (in meters)
fm−>SetDimensions (−3 ,3 ,−3 ,3 ,−3 ,3);

}

// con s t ru c t the primary grid , save the header information
fm−>In i t i a l i z eF i e l dMap () ;

for (Int_t i =0; i<fm−>GetNMetaCubes () ; i++)
{

// f i l l each cube in the primary g r i d
fm−>FillMetaCube (i) ;

}
. . .

✝ ✆

The user-defined parameters that characterize a field map are:

• Double_t tolerance: the average error of the interpolated value computed from the field
map

• Double_t maxCubeSize: the length of a side of the top-level cube. The initial map is formed
by dividing the region into cubes with this side length, and subsequent cubes are formed

15

by subdividing these cubes. Top-level cubes that contain an electrode are removed from the
map, as a uniform tolerance cannot be guaranteed in this region.

• Int_t nLevel: the maximum number of times a top-level cube is subdivided in order to
attain the appropriate tolerance.

• Double_t dimensions[4 or 6]: the 2- (or 3-) dimensional coordinates of the field map.

While the methods for computing a field map in serial produce the same results as their paral-
lel counterpart, the preferred method for field map construction is in parallel on an MPI-enabled
computer grid. An example program that performs exactly this task, bin/TestFieldMap_MPI,
and its source are provided for the user.

5.4.2 Implementing field maps for use in computation

As they inherit from KEMFieldSolver, the classes KFieldMap_2D and KFieldMap_3D are imple-
mented in much the same way as the other field solvers. However, since a field map used for
computing fields must already be generated, the user-defined parameters that characterize the
map are taken from the saved configuration of the map itself, rather than set by the user. An
example of their implementation is given below:
✞ ☎

. . .
// c r ea t e a po i n t e r to a genera l (2−dimensiona l or 3−dimensiona l) f i e l d map
KFieldMap_base∗ fm ;

i f (eManager−>IsAxia l lySymmetr ic ())
fmEFie ldSolver = new KFieldMap_2D ((KEMPrimitiveManager ∗) eManager) ;

else

fmEFie ldSolver = new KFieldMap_3D ((KEMPrimitiveManager ∗) eManager) ;
. . .

✝ ✆

References

[1] Ferenc Glück, Axisymmetric electric field calculation by BEM and elliptic integrals. to be
published.

[2] D. Poljak and C. A. Brebbia, Boundary Element Methods for Electrical Engineers. WIT
Press, Boston, 1st Edition, 2005.

[3] Ferenc Glück, Untitled- research notes and personal correspondence.

[4] Ferenc Glück, Axisymmetric electric field calculation by zonal harmonic expansion. to be
published.

[5] Ferenc Glück, Magnetic field calculation of coils by zonal harmonic expansion. to be pub-
lished.

[6] Ferenc Glück, Magnetic field calculation of coils by elliptic integrals. to be published.

[7] Ferenc Glück, BEM electric field calculation for electrodes with discrete rotational symmetry.
to be published.

[8] M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.). ISBN 0954612078,
2009.

16

[9] Rene Brun and Fons Rademakers, The ROOT System Home Page. http://root.cern.ch/,
2008.

[10] The Message Passing Interface (MPI) standard Homepage. http://www-
unix.mcs.anl.gov/mpi/index.htm, 2008.

[11] The OpenMP API Specification for Parallel Programming. http://openmp.org/wp/, 2009.

[12] Daniel Furse, KXML Manual. KATRIN internal document, 2009.

[13] Thomas Corona, Tools for Electromagnetic Field Simulation in the KATRIN Experiment.
Masters Thesis, Massachusetts Institute of Technology, 2009.

[14] George Em Karniadakis and Robert M. Kirby II, Parallel Scientific Computing in C++ and
MPI: A Seamless Approach to Parallel Algorithms and their Implementation. Cambridge
University Press, New York, 2003.

17

